Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

BDD-Based Algorithm for SCC Decomposition of Edge-Coloured Graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00125612" target="_blank" >RIV/00216224:14330/22:00125612 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://lmcs.episciences.org/9198" target="_blank" >https://lmcs.episciences.org/9198</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.46298/LMCS-18(1:38)2022" target="_blank" >10.46298/LMCS-18(1:38)2022</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    BDD-Based Algorithm for SCC Decomposition of Edge-Coloured Graphs

  • Popis výsledku v původním jazyce

    Edge-coloured directed graphs provide an essential structure for modelling and analysis of complex systems arising in many scientific disciplines (e.g. feature-oriented systems, gene regulatory networks, etc.). One of the fundamental problems for edge-coloured graphs is the detection of strongly connected components, or SCCs. The size of edge-coloured graphs appearing in practice can be enormous both in the number of vertices and colours. The large number of vertices prevents us from analysing such graphs using explicit SCC detection algorithms, such as Tarjan's, which motivates the use of a symbolic approach. However, the large number of colours also renders existing symbolic SCC detection algorithms impractical. This paper proposes a novel algorithm that symbolically computes all the monochromatic strongly connected components of an edge-coloured graph. In the worst case, the algorithm performs O(p . n . log n) symbolic steps, where p is the number of colours and n is the number of vertices. We evaluate the algorithm using an experimental implementation based on binary decision diagrams (BDDs). Specifically, we use our implementation to explore the SCCs of a large collection of coloured graphs (up to 2(48)) obtained from Boolean networks - a modelling framework commonly appearing in systems biology.

  • Název v anglickém jazyce

    BDD-Based Algorithm for SCC Decomposition of Edge-Coloured Graphs

  • Popis výsledku anglicky

    Edge-coloured directed graphs provide an essential structure for modelling and analysis of complex systems arising in many scientific disciplines (e.g. feature-oriented systems, gene regulatory networks, etc.). One of the fundamental problems for edge-coloured graphs is the detection of strongly connected components, or SCCs. The size of edge-coloured graphs appearing in practice can be enormous both in the number of vertices and colours. The large number of vertices prevents us from analysing such graphs using explicit SCC detection algorithms, such as Tarjan's, which motivates the use of a symbolic approach. However, the large number of colours also renders existing symbolic SCC detection algorithms impractical. This paper proposes a novel algorithm that symbolically computes all the monochromatic strongly connected components of an edge-coloured graph. In the worst case, the algorithm performs O(p . n . log n) symbolic steps, where p is the number of colours and n is the number of vertices. We evaluate the algorithm using an experimental implementation based on binary decision diagrams (BDDs). Specifically, we use our implementation to explore the SCCs of a large collection of coloured graphs (up to 2(48)) obtained from Boolean networks - a modelling framework commonly appearing in systems biology.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Logical Methods in Computer Science

  • ISSN

    1860-5974

  • e-ISSN

  • Svazek periodika

    18

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    27

  • Strana od-do

    1-27

  • Kód UT WoS článku

    000769134500001

  • EID výsledku v databázi Scopus

    2-s2.0-85127140284