BDD-Based Algorithm for SCC Decomposition of Edge-Coloured Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00125612" target="_blank" >RIV/00216224:14330/22:00125612 - isvavai.cz</a>
Výsledek na webu
<a href="https://lmcs.episciences.org/9198" target="_blank" >https://lmcs.episciences.org/9198</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.46298/LMCS-18(1:38)2022" target="_blank" >10.46298/LMCS-18(1:38)2022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
BDD-Based Algorithm for SCC Decomposition of Edge-Coloured Graphs
Popis výsledku v původním jazyce
Edge-coloured directed graphs provide an essential structure for modelling and analysis of complex systems arising in many scientific disciplines (e.g. feature-oriented systems, gene regulatory networks, etc.). One of the fundamental problems for edge-coloured graphs is the detection of strongly connected components, or SCCs. The size of edge-coloured graphs appearing in practice can be enormous both in the number of vertices and colours. The large number of vertices prevents us from analysing such graphs using explicit SCC detection algorithms, such as Tarjan's, which motivates the use of a symbolic approach. However, the large number of colours also renders existing symbolic SCC detection algorithms impractical. This paper proposes a novel algorithm that symbolically computes all the monochromatic strongly connected components of an edge-coloured graph. In the worst case, the algorithm performs O(p . n . log n) symbolic steps, where p is the number of colours and n is the number of vertices. We evaluate the algorithm using an experimental implementation based on binary decision diagrams (BDDs). Specifically, we use our implementation to explore the SCCs of a large collection of coloured graphs (up to 2(48)) obtained from Boolean networks - a modelling framework commonly appearing in systems biology.
Název v anglickém jazyce
BDD-Based Algorithm for SCC Decomposition of Edge-Coloured Graphs
Popis výsledku anglicky
Edge-coloured directed graphs provide an essential structure for modelling and analysis of complex systems arising in many scientific disciplines (e.g. feature-oriented systems, gene regulatory networks, etc.). One of the fundamental problems for edge-coloured graphs is the detection of strongly connected components, or SCCs. The size of edge-coloured graphs appearing in practice can be enormous both in the number of vertices and colours. The large number of vertices prevents us from analysing such graphs using explicit SCC detection algorithms, such as Tarjan's, which motivates the use of a symbolic approach. However, the large number of colours also renders existing symbolic SCC detection algorithms impractical. This paper proposes a novel algorithm that symbolically computes all the monochromatic strongly connected components of an edge-coloured graph. In the worst case, the algorithm performs O(p . n . log n) symbolic steps, where p is the number of colours and n is the number of vertices. We evaluate the algorithm using an experimental implementation based on binary decision diagrams (BDDs). Specifically, we use our implementation to explore the SCCs of a large collection of coloured graphs (up to 2(48)) obtained from Boolean networks - a modelling framework commonly appearing in systems biology.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Logical Methods in Computer Science
ISSN
1860-5974
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
27
Strana od-do
1-27
Kód UT WoS článku
000769134500001
EID výsledku v databázi Scopus
2-s2.0-85127140284