Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Semi-Manual Annotation of Topics and Genres in Web Corpora : The Cheap and Fast Way

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00127492" target="_blank" >RIV/00216224:14330/22:00127492 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://raslan2022.nlp-consulting.net/" target="_blank" >https://raslan2022.nlp-consulting.net/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Semi-Manual Annotation of Topics and Genres in Web Corpora : The Cheap and Fast Way

  • Popis výsledku v původním jazyce

    In this paper we present a cheap and fast semi-manual approach to annotation of topics and genres in web corpora. The main feature of our method is assigning the same topic or genre label to all web pages coming from websites most represented in the corpus. We assume that web pages within a site share the topic of the whole domain. According to the evaluation of texts coming from sites that were manually assigned a topic label, our hypothesis holds in 92 % of cases. In other words, the noise in these semi-manually labelled web pages is just 8 %. That is clean enough to train a classifier of texts from websites not seen in the process. The procedure of fast manual topic and genre labelling of web domains is described in this paper. Recommendations for training a topic or genre classifier using semi-manually labelled texts from large websites follow.

  • Název v anglickém jazyce

    Semi-Manual Annotation of Topics and Genres in Web Corpora : The Cheap and Fast Way

  • Popis výsledku anglicky

    In this paper we present a cheap and fast semi-manual approach to annotation of topics and genres in web corpora. The main feature of our method is assigning the same topic or genre label to all web pages coming from websites most represented in the corpus. We assume that web pages within a site share the topic of the whole domain. According to the evaluation of texts coming from sites that were manually assigned a topic label, our hypothesis holds in 92 % of cases. In other words, the noise in these semi-manually labelled web pages is just 8 %. That is clean enough to train a classifier of texts from websites not seen in the process. The procedure of fast manual topic and genre labelling of web domains is described in this paper. Recommendations for training a topic or genre classifier using semi-manually labelled texts from large websites follow.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2018101" target="_blank" >LM2018101: Digitální výzkumná infrastruktura pro jazykové technologie, umění a humanitní vědy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Sixteenth Workshop on Recent Advances in Slavonic Natural Languages Processing, RASLAN 2022

  • ISBN

    9788026317524

  • ISSN

    2336-4289

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    141-148

  • Název nakladatele

    Tribun EU

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    1. 1. 2022

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku