Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On a colored Turan problem of Diwan and Mubayi

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00128972" target="_blank" >RIV/00216224:14330/22:00128972 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.disc.2022.113003" target="_blank" >https://doi.org/10.1016/j.disc.2022.113003</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.disc.2022.113003" target="_blank" >10.1016/j.disc.2022.113003</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On a colored Turan problem of Diwan and Mubayi

  • Popis výsledku v původním jazyce

    Suppose that R (red) and B (blue) are two graphs on the same vertex set of size n, and H is some graph with a red-blue coloring of its edges. How large can R and B be if R∪B does not contain a copy of H? Call the largest such integer mex(n,H). This problem was introduced by Diwan and Mubayi, who conjectured that (except for a few specific exceptions) when H is a complete graph on k+1 vertices with any coloring of its edges mex(n,H)=ex(n,Kk+1). This conjecture generalizes Turán's theorem. Diwan and Mubayi also asked for an analogue of Erdős-Stone-Simonovits theorem in this context. We prove the following upper bound on the extremal threshold in terms of the chromatic number χ(H) and the reduced maximum matching number M(H) of H. [Formula presented] M(H) is, among the set of proper χ(H)-colorings of H, the largest set of disjoint pairs of color classes where each pair is connected by edges of just a single color. The result is also proved for more than 2 colors and is tight up to the implied constant factor. We also study mex(n,H) when H is a cycle with a red-blue coloring of its edges, and we show that [Formula presented], which is tight.

  • Název v anglickém jazyce

    On a colored Turan problem of Diwan and Mubayi

  • Popis výsledku anglicky

    Suppose that R (red) and B (blue) are two graphs on the same vertex set of size n, and H is some graph with a red-blue coloring of its edges. How large can R and B be if R∪B does not contain a copy of H? Call the largest such integer mex(n,H). This problem was introduced by Diwan and Mubayi, who conjectured that (except for a few specific exceptions) when H is a complete graph on k+1 vertices with any coloring of its edges mex(n,H)=ex(n,Kk+1). This conjecture generalizes Turán's theorem. Diwan and Mubayi also asked for an analogue of Erdős-Stone-Simonovits theorem in this context. We prove the following upper bound on the extremal threshold in terms of the chromatic number χ(H) and the reduced maximum matching number M(H) of H. [Formula presented] M(H) is, among the set of proper χ(H)-colorings of H, the largest set of disjoint pairs of color classes where each pair is connected by edges of just a single color. The result is also proved for more than 2 colors and is tight up to the implied constant factor. We also study mex(n,H) when H is a cycle with a red-blue coloring of its edges, and we show that [Formula presented], which is tight.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete Mathematics

  • ISSN

    0012-365X

  • e-ISSN

    1872-681X

  • Svazek periodika

    345

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    8

  • Strana od-do

    1-8

  • Kód UT WoS článku

    000831721100007

  • EID výsledku v databázi Scopus

    2-s2.0-85131551550