On a colored Turan problem of Diwan and Mubayi
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00128972" target="_blank" >RIV/00216224:14330/22:00128972 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.disc.2022.113003" target="_blank" >https://doi.org/10.1016/j.disc.2022.113003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2022.113003" target="_blank" >10.1016/j.disc.2022.113003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On a colored Turan problem of Diwan and Mubayi
Popis výsledku v původním jazyce
Suppose that R (red) and B (blue) are two graphs on the same vertex set of size n, and H is some graph with a red-blue coloring of its edges. How large can R and B be if R∪B does not contain a copy of H? Call the largest such integer mex(n,H). This problem was introduced by Diwan and Mubayi, who conjectured that (except for a few specific exceptions) when H is a complete graph on k+1 vertices with any coloring of its edges mex(n,H)=ex(n,Kk+1). This conjecture generalizes Turán's theorem. Diwan and Mubayi also asked for an analogue of Erdős-Stone-Simonovits theorem in this context. We prove the following upper bound on the extremal threshold in terms of the chromatic number χ(H) and the reduced maximum matching number M(H) of H. [Formula presented] M(H) is, among the set of proper χ(H)-colorings of H, the largest set of disjoint pairs of color classes where each pair is connected by edges of just a single color. The result is also proved for more than 2 colors and is tight up to the implied constant factor. We also study mex(n,H) when H is a cycle with a red-blue coloring of its edges, and we show that [Formula presented], which is tight.
Název v anglickém jazyce
On a colored Turan problem of Diwan and Mubayi
Popis výsledku anglicky
Suppose that R (red) and B (blue) are two graphs on the same vertex set of size n, and H is some graph with a red-blue coloring of its edges. How large can R and B be if R∪B does not contain a copy of H? Call the largest such integer mex(n,H). This problem was introduced by Diwan and Mubayi, who conjectured that (except for a few specific exceptions) when H is a complete graph on k+1 vertices with any coloring of its edges mex(n,H)=ex(n,Kk+1). This conjecture generalizes Turán's theorem. Diwan and Mubayi also asked for an analogue of Erdős-Stone-Simonovits theorem in this context. We prove the following upper bound on the extremal threshold in terms of the chromatic number χ(H) and the reduced maximum matching number M(H) of H. [Formula presented] M(H) is, among the set of proper χ(H)-colorings of H, the largest set of disjoint pairs of color classes where each pair is connected by edges of just a single color. The result is also proved for more than 2 colors and is tight up to the implied constant factor. We also study mex(n,H) when H is a cycle with a red-blue coloring of its edges, and we show that [Formula presented], which is tight.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Mathematics
ISSN
0012-365X
e-ISSN
1872-681X
Svazek periodika
345
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
1-8
Kód UT WoS článku
000831721100007
EID výsledku v databázi Scopus
2-s2.0-85131551550