SegmentCodeList: Unsupervised Representation Learning for Human Skeleton Data Retrieval
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00130177" target="_blank" >RIV/00216224:14330/23:00130177 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-28238-6_8" target="_blank" >http://dx.doi.org/10.1007/978-3-031-28238-6_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-28238-6_8" target="_blank" >10.1007/978-3-031-28238-6_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SegmentCodeList: Unsupervised Representation Learning for Human Skeleton Data Retrieval
Popis výsledku v původním jazyce
Recent progress in pose-estimation methods enables the extraction of sufficiently-precise 3D human skeleton data from ordinary videos, which offers great opportunities for a wide range of applications. However, such spatio-temporal data are typically extracted in the form of a continuous skeleton sequence without any information about semantic segmentation or annotation. To make the extracted data reusable for further processing, there is a need to access them based on their content. In this paper, we introduce a universal retrieval approach that compares any two skeleton sequences based on temporal order and similarities of their underlying segments. The similarity of segments is determined by their content-preserving low-dimensional code representation that is learned using the Variational AutoEncoder principle in an unsupervised way. The quality of the proposed representation is validated in retrieval and classification scenarios; our proposal outperforms the state-of-the-art approaches in effectiveness and reaches speed-ups up to 64x on common skeleton sequence datasets.
Název v anglickém jazyce
SegmentCodeList: Unsupervised Representation Learning for Human Skeleton Data Retrieval
Popis výsledku anglicky
Recent progress in pose-estimation methods enables the extraction of sufficiently-precise 3D human skeleton data from ordinary videos, which offers great opportunities for a wide range of applications. However, such spatio-temporal data are typically extracted in the form of a continuous skeleton sequence without any information about semantic segmentation or annotation. To make the extracted data reusable for further processing, there is a need to access them based on their content. In this paper, we introduce a universal retrieval approach that compares any two skeleton sequences based on temporal order and similarities of their underlying segments. The similarity of segments is determined by their content-preserving low-dimensional code representation that is learned using the Variational AutoEncoder principle in an unsupervised way. The quality of the proposed representation is validated in retrieval and classification scenarios; our proposal outperforms the state-of-the-art approaches in effectiveness and reaches speed-ups up to 64x on common skeleton sequence datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
45th European Conference on Information Retrieval (ECIR)
ISBN
9783031282379
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
15
Strana od-do
110-124
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Dublin, Ireland
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000995489700008