Deep-Learning based Reputation Model for Indirect Trust Management
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00130330" target="_blank" >RIV/00216224:14330/23:00130330 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.procs.2023.03.052" target="_blank" >https://doi.org/10.1016/j.procs.2023.03.052</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procs.2023.03.052" target="_blank" >10.1016/j.procs.2023.03.052</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep-Learning based Reputation Model for Indirect Trust Management
Popis výsledku v původním jazyce
In the digital era, human and thing behavioral patterns have been merged, which leads to the need for trust management to secure the relationship among people and things (e.g., driverless cars). Due to the dynamism and complexity of digital environments, trust management depends largely on indirect trust to support its reasoning by building the reputation of trustees based on recommendations reflected in the feedback of sentiment and non-sentiment objects. However, different biases are still affecting the accuracy of indirect trust that reflects a collective trustworthiness belief or societal stereotypes. This work focuses on enabling indirect trust management by leveraging deep learning in combination with synthetic data for bias management. Specifically, this paper proposes a reputation model to support decision-making in trust management by minimizing bias in indirect trust information and fostering fairly the relationship among sentiment and non-sentiment objects. Our experimental results show that the synthetic data can significantly improve the classification accuracy in trust management.
Název v anglickém jazyce
Deep-Learning based Reputation Model for Indirect Trust Management
Popis výsledku anglicky
In the digital era, human and thing behavioral patterns have been merged, which leads to the need for trust management to secure the relationship among people and things (e.g., driverless cars). Due to the dynamism and complexity of digital environments, trust management depends largely on indirect trust to support its reasoning by building the reputation of trustees based on recommendations reflected in the feedback of sentiment and non-sentiment objects. However, different biases are still affecting the accuracy of indirect trust that reflects a collective trustworthiness belief or societal stereotypes. This work focuses on enabling indirect trust management by leveraging deep learning in combination with synthetic data for bias management. Specifically, this paper proposes a reputation model to support decision-making in trust management by minimizing bias in indirect trust information and fostering fairly the relationship among sentiment and non-sentiment objects. Our experimental results show that the synthetic data can significantly improve the classification accuracy in trust management.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
14th International Conference on Ambient Systems, Networks and Technologies Networks (ANT 2023)
ISBN
—
ISSN
1877-0509
e-ISSN
—
Počet stran výsledku
8
Strana od-do
405-412
Název nakladatele
Elsevier
Místo vydání
Neuveden
Místo konání akce
Neuveden
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—