Understanding Health Records in West Slavic Languages: Available Resources, Case Study in Oncology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00131436" target="_blank" >RIV/00216224:14330/23:00131436 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/SHTI230433" target="_blank" >http://dx.doi.org/10.3233/SHTI230433</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/SHTI230433" target="_blank" >10.3233/SHTI230433</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Understanding Health Records in West Slavic Languages: Available Resources, Case Study in Oncology
Popis výsledku v původním jazyce
Currently, there is very little research aimed at developing medical knowledge extraction tools for major West Slavic languages (Czech, Polish, and Slovak). This project lays the groundwork for a general medical knowledge extraction pipeline, introducing the resource vocabularies available for the respective languages (UMLS resources, ICD-10 translations and national drug databases). It demonstrates the utility of this approach on a case study using a large proprietary corpus of Czech oncology records consisting of more than 40 million words written about more than 4,000 patients. After correlating MedDRA terms found in patients' records with drugs prescribed to them, significant non-obvious associations were found between selected medical conditions being mentioned and the probability of certain drugs being prescribed over the course of the patient's treatment, in some cases increasing the probability of prescriptions by over 250%. This direction of research, producing large amounts of annotated data, is a prerequisite for training deep learning models and predictive systems.
Název v anglickém jazyce
Understanding Health Records in West Slavic Languages: Available Resources, Case Study in Oncology
Popis výsledku anglicky
Currently, there is very little research aimed at developing medical knowledge extraction tools for major West Slavic languages (Czech, Polish, and Slovak). This project lays the groundwork for a general medical knowledge extraction pipeline, introducing the resource vocabularies available for the respective languages (UMLS resources, ICD-10 translations and national drug databases). It demonstrates the utility of this approach on a case study using a large proprietary corpus of Czech oncology records consisting of more than 40 million words written about more than 4,000 patients. After correlating MedDRA terms found in patients' records with drugs prescribed to them, significant non-obvious associations were found between selected medical conditions being mentioned and the probability of certain drugs being prescribed over the course of the patient's treatment, in some cases increasing the probability of prescriptions by over 250%. This direction of research, producing large amounts of annotated data, is a prerequisite for training deep learning models and predictive systems.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Healthcare Transformation with Informatics and Artificial Intelligence
ISBN
9781643684000
ISSN
0926-9630
e-ISSN
—
Počet stran výsledku
5
Strana od-do
97-101
Název nakladatele
IOS Press
Místo vydání
Amsterdam
Místo konání akce
Amsterdam
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—