Minimizing an Uncrossed Collection of Drawings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00131579" target="_blank" >RIV/00216224:14330/23:00131579 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-49272-3_8" target="_blank" >http://dx.doi.org/10.1007/978-3-031-49272-3_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-49272-3_8" target="_blank" >10.1007/978-3-031-49272-3_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Minimizing an Uncrossed Collection of Drawings
Popis výsledku v původním jazyce
In this paper, we introduce the following new concept in graph drawing. Our task is to find a small collection of drawings such that they all together satisfy some property that is useful for graph visualization. We propose investigating a property where each edge is not crossed in at least one drawing in the collection. We call such collection uncrossed. This property is motivated by a quintessential problem of the crossing number, where one asks for a drawing where the number of edge crossings is minimum. Indeed, if we are allowed to visualize only one drawing, then the one which minimizes the number of crossings is probably the neatest for the first orientation. However, a collection of drawings where each highlights a different aspect of a graph without any crossings could shed even more light on the graph’s structure. We propose two definitions. First, the uncrossed number, minimizes the number of graph drawings in a collection, satisfying the uncrossed property. Second, the uncrossed crossing number, minimizes the total number of crossings in the collection that satisfy the uncrossed property. For both definitions, we establish initial results. We prove that the uncrossed crossing number is NP-hard, but there is an algorithm parameterized by the solution size.
Název v anglickém jazyce
Minimizing an Uncrossed Collection of Drawings
Popis výsledku anglicky
In this paper, we introduce the following new concept in graph drawing. Our task is to find a small collection of drawings such that they all together satisfy some property that is useful for graph visualization. We propose investigating a property where each edge is not crossed in at least one drawing in the collection. We call such collection uncrossed. This property is motivated by a quintessential problem of the crossing number, where one asks for a drawing where the number of edge crossings is minimum. Indeed, if we are allowed to visualize only one drawing, then the one which minimizes the number of crossings is probably the neatest for the first orientation. However, a collection of drawings where each highlights a different aspect of a graph without any crossings could shed even more light on the graph’s structure. We propose two definitions. First, the uncrossed number, minimizes the number of graph drawings in a collection, satisfying the uncrossed property. Second, the uncrossed crossing number, minimizes the total number of crossings in the collection that satisfy the uncrossed property. For both definitions, we establish initial results. We prove that the uncrossed crossing number is NP-hard, but there is an algorithm parameterized by the solution size.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Graph Drawing 2023
ISBN
9783031492716
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
14
Strana od-do
110-123
Název nakladatele
Springer, Cham
Místo vydání
Switzerland
Místo konání akce
Italy
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—