Interactive Matching Logic Proofs in Coq
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00131889" target="_blank" >RIV/00216224:14330/23:00131889 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-47963-2_10" target="_blank" >http://dx.doi.org/10.1007/978-3-031-47963-2_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-47963-2_10" target="_blank" >10.1007/978-3-031-47963-2_10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interactive Matching Logic Proofs in Coq
Popis výsledku v původním jazyce
Matching logic (ML) is a formalism for specifying and reasoning about mathematical structures by means of patterns and pattern matching. Previously, it has been used to capture a number of other logics, e.g., separation logic with recursive definitions and linear temporal logic. ML has also been formalized in the Coq Proof Assistant, and the soundness of its Hilbert-style proof system has been mechanized. However, using a Hilbert-style system for interactive reasoning is challenging - even more so in ML, which lacks a general deduction theorem. Therefore, we propose a single-conclusion sequent calculus for ML that is more amenable to interactive proving. Based on this sequent calculus, we implement a proof mode for interactive reasoning in ML, which significantly simplifies the construction of ML proofs in Coq. The proof mode is a mechanism for displaying intermediate proof states and an extensible set of proof tactics that implement the rules of the sequent calculus. We evaluate our proof mode on a collection of examples, showing a substantial improvement in proof script size and readability.
Název v anglickém jazyce
Interactive Matching Logic Proofs in Coq
Popis výsledku anglicky
Matching logic (ML) is a formalism for specifying and reasoning about mathematical structures by means of patterns and pattern matching. Previously, it has been used to capture a number of other logics, e.g., separation logic with recursive definitions and linear temporal logic. ML has also been formalized in the Coq Proof Assistant, and the soundness of its Hilbert-style proof system has been mechanized. However, using a Hilbert-style system for interactive reasoning is challenging - even more so in ML, which lacks a general deduction theorem. Therefore, we propose a single-conclusion sequent calculus for ML that is more amenable to interactive proving. Based on this sequent calculus, we implement a proof mode for interactive reasoning in ML, which significantly simplifies the construction of ML proofs in Coq. The proof mode is a mechanism for displaying intermediate proof states and an extensible set of proof tactics that implement the rules of the sequent calculus. We evaluate our proof mode on a collection of examples, showing a substantial improvement in proof script size and readability.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Theoretical Aspects of Computing (ICTAC 2023)
ISBN
9783031479625
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
19
Strana od-do
139-157
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Lima, Peru
Místo konání akce
Lima, Peru
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
001160556100010