Reducing Acceptance Marks in Emerson-Lei Automata by QBF Solving
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00131935" target="_blank" >RIV/00216224:14330/23:00131935 - isvavai.cz</a>
Výsledek na webu
<a href="https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2023.23" target="_blank" >https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2023.23</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.SAT.2023.23" target="_blank" >10.4230/LIPIcs.SAT.2023.23</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reducing Acceptance Marks in Emerson-Lei Automata by QBF Solving
Popis výsledku v původním jazyce
This paper presents a novel application of QBF solving to automata reduction. We focus on Transition-based Emerson-Lei automata (TELA), which is a popular formalism that generalizes many traditional kinds of automata over infinite words including Büchi, co-Büchi, Rabin, Streett, and parity automata. Transitions in a TELA are labelled with acceptance marks and its accepting formula is a positive Boolean combination of atoms saying that a particular mark has to be visited infinitely or finitely often. Algorithms processing these automata are often very sensitive to the number of acceptance marks. We introduce a new technique for reducing the number of acceptance marks in TELA based on satisfiability of quantified Boolean formulas (QBF). We evaluated our reduction technique on TELA produced by state-of-the-art tools of the libraries Owl and Spot and by the tool ltl3tela. The technique reduced some acceptance marks in automata produced by all the tools. On automata with more than one acceptance mark obtained by translation of LTL formulas from literature with tools Delag and Rabinizer 4, our technique reduced 27.7% and 39.3% of acceptance marks, respectively. The reduction was even higher on automata from random formulas.
Název v anglickém jazyce
Reducing Acceptance Marks in Emerson-Lei Automata by QBF Solving
Popis výsledku anglicky
This paper presents a novel application of QBF solving to automata reduction. We focus on Transition-based Emerson-Lei automata (TELA), which is a popular formalism that generalizes many traditional kinds of automata over infinite words including Büchi, co-Büchi, Rabin, Streett, and parity automata. Transitions in a TELA are labelled with acceptance marks and its accepting formula is a positive Boolean combination of atoms saying that a particular mark has to be visited infinitely or finitely often. Algorithms processing these automata are often very sensitive to the number of acceptance marks. We introduce a new technique for reducing the number of acceptance marks in TELA based on satisfiability of quantified Boolean formulas (QBF). We evaluated our reduction technique on TELA produced by state-of-the-art tools of the libraries Owl and Spot and by the tool ltl3tela. The technique reduced some acceptance marks in automata produced by all the tools. On automata with more than one acceptance mark obtained by translation of LTL formulas from literature with tools Delag and Rabinizer 4, our technique reduced 27.7% and 39.3% of acceptance marks, respectively. The reduction was even higher on automata from random formulas.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
26th International Conference on Theory and Applications of Satisfiability Testing, SAT 2023, July 4-8, 2023, Alghero, Italy
ISBN
9783959772860
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
20
Strana od-do
1-20
Název nakladatele
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Místo vydání
Dagstuhl, Germany
Místo konání akce
Alghero, Italy
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—