Testing of detection tools for AI-generated text
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00132774" target="_blank" >RIV/00216224:14330/23:00132774 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s40979-023-00146-z" target="_blank" >https://link.springer.com/article/10.1007/s40979-023-00146-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40979-023-00146-z" target="_blank" >10.1007/s40979-023-00146-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Testing of detection tools for AI-generated text
Popis výsledku v původním jazyce
Recent advances in generative pre-trained transformer large language models have emphasised the potential risks of unfair use of artifcial intelligence (AI) generated content in an academic environment and intensifed eforts in searching for solutions to detect such content. The paper examines the general functionality of detection tools for AI-generated text and evaluates them based on accuracy and error type analysis. Specifcally, the study seeks to answer research questions about whether existing detection tools can reliably diferentiate between human-written text and ChatGPTgenerated text, and whether machine translation and content obfuscation techniques afect the detection of AI-generated text. The research covers 12 publicly available tools and two commercial systems (Turnitin and PlagiarismCheck) that are widely used in the academic setting. The researchers conclude that the available detection tools are neither accurate nor reliable and have a main bias towards classifying the output as human-written rather than detecting AI-generated text. Furthermore, content obfuscation techniques signifcantly worsen the performance of tools. The study makes several signifcant contributions. First, it summarises up-to-date similar scientific and non-scientifc eforts in the feld. Second, it presents the result of one of the most comprehensive tests conducted so far, based on a rigorous research methodology, an original document set, and a broad coverage of tools. Third, it discusses the implications and drawbacks of using detection tools for AI-generated text in academic settings.
Název v anglickém jazyce
Testing of detection tools for AI-generated text
Popis výsledku anglicky
Recent advances in generative pre-trained transformer large language models have emphasised the potential risks of unfair use of artifcial intelligence (AI) generated content in an academic environment and intensifed eforts in searching for solutions to detect such content. The paper examines the general functionality of detection tools for AI-generated text and evaluates them based on accuracy and error type analysis. Specifcally, the study seeks to answer research questions about whether existing detection tools can reliably diferentiate between human-written text and ChatGPTgenerated text, and whether machine translation and content obfuscation techniques afect the detection of AI-generated text. The research covers 12 publicly available tools and two commercial systems (Turnitin and PlagiarismCheck) that are widely used in the academic setting. The researchers conclude that the available detection tools are neither accurate nor reliable and have a main bias towards classifying the output as human-written rather than detecting AI-generated text. Furthermore, content obfuscation techniques signifcantly worsen the performance of tools. The study makes several signifcant contributions. First, it summarises up-to-date similar scientific and non-scientifc eforts in the feld. Second, it presents the result of one of the most comprehensive tests conducted so far, based on a rigorous research methodology, an original document set, and a broad coverage of tools. Third, it discusses the implications and drawbacks of using detection tools for AI-generated text in academic settings.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal for Educational Integrity
ISSN
1833-2595
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
26
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
39
Strana od-do
1-39
Kód UT WoS článku
001129231700001
EID výsledku v databázi Scopus
2-s2.0-85180443619