Named Entity Linking in English-Czech Parallel Corpus
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00137343" target="_blank" >RIV/00216224:14330/24:00137343 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/book/10.1007/978-3-031-70563-2" target="_blank" >https://link.springer.com/book/10.1007/978-3-031-70563-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-70563-2_12" target="_blank" >10.1007/978-3-031-70563-2_12</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Named Entity Linking in English-Czech Parallel Corpus
Popis výsledku v původním jazyce
We present a procedure to build relatively quickly new resources with annotated named entities and their linking to Wikidata. First, we applied state-of-the-art models for named entity recognition on a sentence-aligned parallel English-Czech corpus. We selected the most common entity classes: person, location, organization, and miscellaneous. Second, we manually checked the corpus in a suitably set annotation application. Third, we used a state-of-the-art tool for named entity linking and enhanced the ranking using sentence embeddings obtained by sentence transformers. We then checked manually whether the linking to knowledge bases was correct. As a result, we added two annotation layers to an existing parallel corpus: one with the named entities and one with links to Wikidata. The corpus contains 14,881 parallel Czech-English sentences and 3,769 links to Wikidata. The corpus can be used for training more robust named entity recognition and named entity linking models and for linguistic research of parallel news texts.
Název v anglickém jazyce
Named Entity Linking in English-Czech Parallel Corpus
Popis výsledku anglicky
We present a procedure to build relatively quickly new resources with annotated named entities and their linking to Wikidata. First, we applied state-of-the-art models for named entity recognition on a sentence-aligned parallel English-Czech corpus. We selected the most common entity classes: person, location, organization, and miscellaneous. Second, we manually checked the corpus in a suitably set annotation application. Third, we used a state-of-the-art tool for named entity linking and enhanced the ranking using sentence embeddings obtained by sentence transformers. We then checked manually whether the linking to knowledge bases was correct. As a result, we added two annotation layers to an existing parallel corpus: one with the named entities and one with links to Wikidata. The corpus contains 14,881 parallel Czech-English sentences and 3,769 links to Wikidata. The corpus can be used for training more robust named entity recognition and named entity linking models and for linguistic research of parallel news texts.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Text, Speech, and Dialogue : 27th International Conference, TSD 2024, Brno, Czech Republic, September 9–13, 2024, Proceedings, Part I
ISBN
9783031705625
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
147-158
Název nakladatele
Springer International Publishing
Místo vydání
Cham
Místo konání akce
Brno
Datum konání akce
9. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001307840300012