Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multistage Malware Detection Method for Backup Systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00139890" target="_blank" >RIV/00216224:14330/24:00139890 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.3390/technologies12020023" target="_blank" >https://doi.org/10.3390/technologies12020023</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/technologies12020023" target="_blank" >10.3390/technologies12020023</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multistage Malware Detection Method for Backup Systems

  • Popis výsledku v původním jazyce

    This paper proposes an innovative solution to address the challenge of detecting latent malware in backup systems. The proposed detection system utilizes a multifaceted approach that combines similarity analysis with machine learning algorithms to improve malware detection. The results demonstrate the potential of advanced similarity search techniques, powered by the Faiss model, in strengthening malware discovery within system backups and network traffic. Implementing these techniques will lead to more resilient cybersecurity practices, protecting essential systems from hidden malware threats. This paper’s findings underscore the potential of advanced similarity search techniques to enhance malware discovery in system backups and network traffic, and the implications of implementing these techniques include more resilient cybersecurity practices and protecting essential systems from malicious threats hidden within backup archives and network data. The integration of AI methods improves the system’s efficiency and speed, making the proposed system more practical for real-world cybersecurity. This paper’s contribution is a novel and comprehensive solution designed to detect latent malware in backups, preventing the backup of compromised systems. The system comprises multiple analytical components, including a system file change detector, an agent to monitor network traffic, and a firewall, all integrated into a central decision-making unit. The current progress of the research and future steps are discussed, highlighting the contributions of this project and potential enhancements to improve cybersecurity practices.

  • Název v anglickém jazyce

    Multistage Malware Detection Method for Backup Systems

  • Popis výsledku anglicky

    This paper proposes an innovative solution to address the challenge of detecting latent malware in backup systems. The proposed detection system utilizes a multifaceted approach that combines similarity analysis with machine learning algorithms to improve malware detection. The results demonstrate the potential of advanced similarity search techniques, powered by the Faiss model, in strengthening malware discovery within system backups and network traffic. Implementing these techniques will lead to more resilient cybersecurity practices, protecting essential systems from hidden malware threats. This paper’s findings underscore the potential of advanced similarity search techniques to enhance malware discovery in system backups and network traffic, and the implications of implementing these techniques include more resilient cybersecurity practices and protecting essential systems from malicious threats hidden within backup archives and network data. The integration of AI methods improves the system’s efficiency and speed, making the proposed system more practical for real-world cybersecurity. This paper’s contribution is a novel and comprehensive solution designed to detect latent malware in backups, preventing the backup of compromised systems. The system comprises multiple analytical components, including a system file change detector, an agent to monitor network traffic, and a firewall, all integrated into a central decision-making unit. The current progress of the research and future steps are discussed, highlighting the contributions of this project and potential enhancements to improve cybersecurity practices.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/VK01030030" target="_blank" >VK01030030: Systém pro zálohování a ukládání dat s integrovanou aktivní ochranou proti kybernetickým hrozbám</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    TECHNOLOGIES

  • ISSN

    2227-7080

  • e-ISSN

    2227-7080

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    16

  • Strana od-do

    1-16

  • Kód UT WoS článku

    001172262100001

  • EID výsledku v databázi Scopus

    2-s2.0-85185923905