Complexity-based analysis of the correlation between stride interval variability and muscle reaction at different walking speeds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14510%2F21%3A00121893" target="_blank" >RIV/00216224:14510/21:00121893 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S174680942100553X?via%3Dihub" target="_blank" >http://www.sciencedirect.com/science/article/pii/S174680942100553X?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bspc.2021.102956" target="_blank" >10.1016/j.bspc.2021.102956</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Complexity-based analysis of the correlation between stride interval variability and muscle reaction at different walking speeds
Popis výsledku v původním jazyce
In this research, for the first time, we evaluated the correlation between the variations of leg muscle reaction and gait at different walking speeds. Since leg muscle reaction in the form of Electromyogram (EMG) signals and stride interval time series (as gait variability) have complex structures, we utilized fractal theory and sample entropy to decode their alterations at different walking speeds. Twenty-two subjects walked at three different speeds (slow, comfortable, and fast) in six trials, and we analyzed the fractal dimension and sample entropy of EMG signals and stride interval time series. Based on the results, increasing the walking speed causes lower complexity in EMG signals and stride interval time series. Besides, strong correlations were found among the changes in the complexity of EMG signals and stride interval time series at different walking speeds. This method can be applied to analyze the correlation between other complex physiological signals of humans (e.g., EEG and ECG) during walking and running.
Název v anglickém jazyce
Complexity-based analysis of the correlation between stride interval variability and muscle reaction at different walking speeds
Popis výsledku anglicky
In this research, for the first time, we evaluated the correlation between the variations of leg muscle reaction and gait at different walking speeds. Since leg muscle reaction in the form of Electromyogram (EMG) signals and stride interval time series (as gait variability) have complex structures, we utilized fractal theory and sample entropy to decode their alterations at different walking speeds. Twenty-two subjects walked at three different speeds (slow, comfortable, and fast) in six trials, and we analyzed the fractal dimension and sample entropy of EMG signals and stride interval time series. Based on the results, increasing the walking speed causes lower complexity in EMG signals and stride interval time series. Besides, strong correlations were found among the changes in the complexity of EMG signals and stride interval time series at different walking speeds. This method can be applied to analyze the correlation between other complex physiological signals of humans (e.g., EEG and ECG) during walking and running.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30306 - Sport and fitness sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomedical Signal Processing and Control
ISSN
1746-8094
e-ISSN
1746-8108
Svazek periodika
69
Číslo periodika v rámci svazku
Aug 2021
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000685643500009
EID výsledku v databázi Scopus
2-s2.0-85109429223