A detailed analysis of game statistics of professional tennis players: An inferential and machine learning approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14510%2F24%3A00137549" target="_blank" >RIV/00216224:14510/24:00137549 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309085" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309085</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0309085" target="_blank" >10.1371/journal.pone.0309085</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A detailed analysis of game statistics of professional tennis players: An inferential and machine learning approach
Popis výsledku v původním jazyce
Tennis, a widely enjoyed sport, motivates athletes and coaches to optimize training for competitive success. This retrospective predictive study examines anthropometric features and statistics of 1990 tennis players in the 2022 season, using 20,040 data points retrospectively obtained from the ATP official source after the end of the season. These data were cross-verified with information from other sources before categorisation to address any discrepancies. Employing various analytical methods, the results emphasize the strategic importance of tournament participation and gameplay for financial gains and higher rankings. Prize money analysis reveals a significant disparity favoring top players. Multivariate Analysis of Variance highlights the need to consider multiple variables for understanding ATP rankings. Multinomial Logistic Regression identifies age, height, and specific service-related metrics as key determinants, with older and taller players more likely to secure top positions. Neural Network models exhibit potential in predicting ATP Rank outcomes, particularly for ATP Rank (500). Our results argue for the use of Artificial Intelligence (AI), specifically Neural Networks, in handling complex interactions and emphasize that AI is a supportive tool in decision-making, requiring careful consideration by experienced individuals. In summary, this study enhances our understanding of ATP ranking factors, providing actionable insights for coaches, players, and stakeholders in the tennis community.
Název v anglickém jazyce
A detailed analysis of game statistics of professional tennis players: An inferential and machine learning approach
Popis výsledku anglicky
Tennis, a widely enjoyed sport, motivates athletes and coaches to optimize training for competitive success. This retrospective predictive study examines anthropometric features and statistics of 1990 tennis players in the 2022 season, using 20,040 data points retrospectively obtained from the ATP official source after the end of the season. These data were cross-verified with information from other sources before categorisation to address any discrepancies. Employing various analytical methods, the results emphasize the strategic importance of tournament participation and gameplay for financial gains and higher rankings. Prize money analysis reveals a significant disparity favoring top players. Multivariate Analysis of Variance highlights the need to consider multiple variables for understanding ATP rankings. Multinomial Logistic Regression identifies age, height, and specific service-related metrics as key determinants, with older and taller players more likely to secure top positions. Neural Network models exhibit potential in predicting ATP Rank outcomes, particularly for ATP Rank (500). Our results argue for the use of Artificial Intelligence (AI), specifically Neural Networks, in handling complex interactions and emphasize that AI is a supportive tool in decision-making, requiring careful consideration by experienced individuals. In summary, this study enhances our understanding of ATP ranking factors, providing actionable insights for coaches, players, and stakeholders in the tennis community.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30306 - Sport and fitness sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Plos One
ISSN
1932-6203
e-ISSN
1932-6203
Svazek periodika
19
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
—
Kód UT WoS článku
001349526900029
EID výsledku v databázi Scopus
2-s2.0-85208360801