Di-ANFIS: an integrated blockchain–IoT–big data-enabled framework for evaluating service supply chain performance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F21%3A00121669" target="_blank" >RIV/00216224:14560/21:00121669 - isvavai.cz</a>
Výsledek na webu
<a href="https://academic.oup.com/jcde/article/8/2/676/6141474?login=true" target="_blank" >https://academic.oup.com/jcde/article/8/2/676/6141474?login=true</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/jcde/qwab007" target="_blank" >10.1093/jcde/qwab007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Di-ANFIS: an integrated blockchain–IoT–big data-enabled framework for evaluating service supply chain performance
Popis výsledku v původním jazyce
Service supply chain management is a complex process because of its intangibility, high diversity of services, trustless settings, and uncertain conditions. However, the traditional evaluating models mostly consider the historical performance data and fail to predict and diagnose the problems’ root. This paper proposes a distributed, trustworthy, tamper-proof, and learning framework for evaluating service supply chain performance based on Blockchain and Adaptive Network-based Fuzzy Inference Systems (ANFIS) techniques, named Di-ANFIS. The main objectives of this research are: 1) presenting hierarchical criteria of service supply chain performance to cope with the diagnosis of the problems’ root; 2) proposing a smart learning model to deal with the uncertainty conditions by a combination of neural network and fuzzy logic, 3) and introducing a distributed Blockchain-based framework due to the dependence of ANFIS on big data and the lack of trust and security in the supply chain. Furthermore, the proposed six-layer conceptual framework consists of the data layer, connection layer, Blockchain layer, smart layer, ANFIS layer, and application layer. This architecture creates a performance management system using the Internet of Things (IoT), smart contracts, and ANFIS based on the Blockchain platform. The Di-ANFIS model provides a performance evaluation system without needing a third party and a reliable intermediary that provides an agile and diagnostic model in a smart and learning process. It also saves computing time and speeds up information flow.
Název v anglickém jazyce
Di-ANFIS: an integrated blockchain–IoT–big data-enabled framework for evaluating service supply chain performance
Popis výsledku anglicky
Service supply chain management is a complex process because of its intangibility, high diversity of services, trustless settings, and uncertain conditions. However, the traditional evaluating models mostly consider the historical performance data and fail to predict and diagnose the problems’ root. This paper proposes a distributed, trustworthy, tamper-proof, and learning framework for evaluating service supply chain performance based on Blockchain and Adaptive Network-based Fuzzy Inference Systems (ANFIS) techniques, named Di-ANFIS. The main objectives of this research are: 1) presenting hierarchical criteria of service supply chain performance to cope with the diagnosis of the problems’ root; 2) proposing a smart learning model to deal with the uncertainty conditions by a combination of neural network and fuzzy logic, 3) and introducing a distributed Blockchain-based framework due to the dependence of ANFIS on big data and the lack of trust and security in the supply chain. Furthermore, the proposed six-layer conceptual framework consists of the data layer, connection layer, Blockchain layer, smart layer, ANFIS layer, and application layer. This architecture creates a performance management system using the Internet of Things (IoT), smart contracts, and ANFIS based on the Blockchain platform. The Di-ANFIS model provides a performance evaluation system without needing a third party and a reliable intermediary that provides an agile and diagnostic model in a smart and learning process. It also saves computing time and speeds up information flow.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_027%2F0008360" target="_blank" >EF16_027/0008360: Postdoc@MUNI</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational Design and Engineering
ISSN
2288-4300
e-ISSN
2288-5048
Svazek periodika
8
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
676-690
Kód UT WoS článku
000646113800013
EID výsledku v databázi Scopus
2-s2.0-85104053632