Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

FINANCIAL DISTRESS PREDICTION FOR MANUFACTURING AND COMMERCIAL COMPANIES

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F21%3A00122738" target="_blank" >RIV/00216224:14560/21:00122738 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.nordsci.org" target="_blank" >http://www.nordsci.org</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.32008/NORDSCI2021/B2/V4/18" target="_blank" >10.32008/NORDSCI2021/B2/V4/18</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    FINANCIAL DISTRESS PREDICTION FOR MANUFACTURING AND COMMERCIAL COMPANIES

  • Popis výsledku v původním jazyce

    A large number of studies on bankruptcy prediction are published every year. The topic of SME failure prediction has evolved over the past decades into a relevant research area that has grown exponentially across many disciplines, including finance and management, for obvious reasons. This has been motivated by the massive toll on SMEs caused by the global crisis of 2007-2009, the recent COVID-19 crisis and the resulting need to update indicators of SME failure. Many authors during the last fifty years have examined several possibilities to predict business failure. They have studied bankruptcy prediction models under different perspectives but still could not indicate the most reliable model. This paper focuses on the Czech economy, specifically at small and medium-sized enterprises (SMEs). This article aims to find if there exist different factors that could predict bankruptcy for manufacturing and commercial companies. Considering the research objective, the following hypotheses were set: H1: Indicators used in the financial distress model for manufacturing companies differ from commercial companies.; H2: Applying a model based on different segmentation criteria improves the reliability of bankruptcy prediction. It is the ongoing research about the value of several popular bankruptcy models that are often applied, namely the Altman Z-score, the Ohlson O-score, the Zmijewski's model, the Taffler's model, and the IN05 model. The logistic regression has been used to investigate around 1800 companies, of which 308 failed during 2010 – 2017. Reached results confirm both hypotheses and some suggestions arise from it. When we develop a bankruptcy model, it is necessary to sort companies according to different criteria. It also confirms findings of the last years literature review the closer the similarity of businesses, the greater accuracy of bankruptcy models. Further, it is required to exploit common used financial indicators with a combination of modified indicators to assess the probability of bankruptcy precisely.

  • Název v anglickém jazyce

    FINANCIAL DISTRESS PREDICTION FOR MANUFACTURING AND COMMERCIAL COMPANIES

  • Popis výsledku anglicky

    A large number of studies on bankruptcy prediction are published every year. The topic of SME failure prediction has evolved over the past decades into a relevant research area that has grown exponentially across many disciplines, including finance and management, for obvious reasons. This has been motivated by the massive toll on SMEs caused by the global crisis of 2007-2009, the recent COVID-19 crisis and the resulting need to update indicators of SME failure. Many authors during the last fifty years have examined several possibilities to predict business failure. They have studied bankruptcy prediction models under different perspectives but still could not indicate the most reliable model. This paper focuses on the Czech economy, specifically at small and medium-sized enterprises (SMEs). This article aims to find if there exist different factors that could predict bankruptcy for manufacturing and commercial companies. Considering the research objective, the following hypotheses were set: H1: Indicators used in the financial distress model for manufacturing companies differ from commercial companies.; H2: Applying a model based on different segmentation criteria improves the reliability of bankruptcy prediction. It is the ongoing research about the value of several popular bankruptcy models that are often applied, namely the Altman Z-score, the Ohlson O-score, the Zmijewski's model, the Taffler's model, and the IN05 model. The logistic regression has been used to investigate around 1800 companies, of which 308 failed during 2010 – 2017. Reached results confirm both hypotheses and some suggestions arise from it. When we develop a bankruptcy model, it is necessary to sort companies according to different criteria. It also confirms findings of the last years literature review the closer the similarity of businesses, the greater accuracy of bankruptcy models. Further, it is required to exploit common used financial indicators with a combination of modified indicators to assess the probability of bankruptcy precisely.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    50206 - Finance

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    NORDSCI Conference proceedings 2021

  • ISBN

    9786197495140

  • ISSN

  • e-ISSN

    2603-4107

  • Počet stran výsledku

    9

  • Strana od-do

    203-211

  • Název nakladatele

    SAIMA CONSULT LTD

  • Místo vydání

    Bulgaria

  • Místo konání akce

    Bulgaria

  • Datum konání akce

    1. 1. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku