Data-Driven Intelligence for Characterizing Internet-scale IoT Exploitations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F18%3A00108865" target="_blank" >RIV/00216224:14610/18:00108865 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8644468" target="_blank" >https://ieeexplore.ieee.org/document/8644468</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/GLOCOMW.2018.8644468" target="_blank" >10.1109/GLOCOMW.2018.8644468</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data-Driven Intelligence for Characterizing Internet-scale IoT Exploitations
Popis výsledku v původním jazyce
While the security issue associated with the Internet-of-Things (IoT) continues to attract significant attention from the research and operational communities, the visibility of IoT security-related data hinders the prompt inference and remediation of IoT maliciousness. In an effort to address the IoT security problem at large, in this work, we extend passive monitoring and measurements by investigating network telescope data to infer and analyze malicious activities generated by compromised IoT devices deployed in various domains. Explicitly, we develop a data-driven approach to pinpoint exploited IoT devices, investigate and differentiate their illicit actions, and examine their hosting environments. More importantly, we conduct discussions with various entities to obtain IP allocation information, which further allows us to attribute IoT exploitations per business sector (i.e., education, financial, manufacturing, etc.). Our analysis draws upon 1.2 TB of darknet data that was collected from a /8 network telescope for a 1 day period. The outcome signifies an alarming number of compromised IoT devices. Notably, around 940 of them fell victims of DDoS attacks, while 55,000 IoT nodes were shown to be compromised, aggressively probing Internet-wide hosts. Additionally, we inferred alarming IoT exploitations in various critical sectors such as the manufacturing, financial and healthcare realms.
Název v anglickém jazyce
Data-Driven Intelligence for Characterizing Internet-scale IoT Exploitations
Popis výsledku anglicky
While the security issue associated with the Internet-of-Things (IoT) continues to attract significant attention from the research and operational communities, the visibility of IoT security-related data hinders the prompt inference and remediation of IoT maliciousness. In an effort to address the IoT security problem at large, in this work, we extend passive monitoring and measurements by investigating network telescope data to infer and analyze malicious activities generated by compromised IoT devices deployed in various domains. Explicitly, we develop a data-driven approach to pinpoint exploited IoT devices, investigate and differentiate their illicit actions, and examine their hosting environments. More importantly, we conduct discussions with various entities to obtain IP allocation information, which further allows us to attribute IoT exploitations per business sector (i.e., education, financial, manufacturing, etc.). Our analysis draws upon 1.2 TB of darknet data that was collected from a /8 network telescope for a 1 day period. The outcome signifies an alarming number of compromised IoT devices. Notably, around 940 of them fell victims of DDoS attacks, while 55,000 IoT nodes were shown to be compromised, aggressively probing Internet-wide hosts. Additionally, we inferred alarming IoT exploitations in various critical sectors such as the manufacturing, financial and healthcare realms.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2018 IEEE Globecom Workshops
ISBN
9781538649206
ISSN
2166-0069
e-ISSN
—
Počet stran výsledku
7
Strana od-do
1-7
Název nakladatele
IEEE
Místo vydání
Abu Dhabi
Místo konání akce
Abu Dhabi
Datum konání akce
9. 12. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000462817000273