A Research Roadmap of Big Data Clustering Algorithms for Future Internet of Things
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F19%3A00108886" target="_blank" >RIV/00216224:14610/19:00108886 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4018/IJOCI.2019040102" target="_blank" >http://dx.doi.org/10.4018/IJOCI.2019040102</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/IJOCI.2019040102" target="_blank" >10.4018/IJOCI.2019040102</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Research Roadmap of Big Data Clustering Algorithms for Future Internet of Things
Popis výsledku v původním jazyce
Due to the massive data increase in different Internet of Things (IoT) domains such as healthcare IoT and Smart City IoT, Big Data technologies have been emerged as critical analytics tools for analyzing the IoT data. Among the Big Data technologies, data clustering is one of the essential approaches to process the IoT data. However, how to select a suitable clustering algorithm for IoT data is still unclear. Furthermore, since Big Data technology are still in its initial stage for different IoT domains, it is thus valuable to propose and structure the research challenges between Big Data and IoT. Therefore, this paper starts from reviewing and comparing the data clustering algorithms that can be applied in IoT datasets, and then extends the discussions to a broader IoT context such as IoT dynamics and IoT mobile networks. Finally, this paper identifies a set of research challenges that harvest a research roadmap for the Big Data research in IoT domains. The proposed research roadmap aims at bridging the research gaps between Big Data and various IoT contexts.
Název v anglickém jazyce
A Research Roadmap of Big Data Clustering Algorithms for Future Internet of Things
Popis výsledku anglicky
Due to the massive data increase in different Internet of Things (IoT) domains such as healthcare IoT and Smart City IoT, Big Data technologies have been emerged as critical analytics tools for analyzing the IoT data. Among the Big Data technologies, data clustering is one of the essential approaches to process the IoT data. However, how to select a suitable clustering algorithm for IoT data is still unclear. Furthermore, since Big Data technology are still in its initial stage for different IoT domains, it is thus valuable to propose and structure the research challenges between Big Data and IoT. Therefore, this paper starts from reviewing and comparing the data clustering algorithms that can be applied in IoT datasets, and then extends the discussions to a broader IoT context such as IoT dynamics and IoT mobile networks. Finally, this paper identifies a set of research challenges that harvest a research roadmap for the Big Data research in IoT domains. The proposed research roadmap aims at bridging the research gaps between Big Data and various IoT contexts.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_013%2F0001802" target="_blank" >EF16_013/0001802: CERIT Scientific Cloud</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Organizational and Collective Intelligence
ISSN
1947-9344
e-ISSN
1947-9352
Svazek periodika
9
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
16-30
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—