Exploiting historical data: Pruning autotuning spaces and estimating the number of tuning steps
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F20%3A00116267" target="_blank" >RIV/00216224:14610/20:00116267 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/cpe.5962" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/cpe.5962</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/cpe.5962" target="_blank" >10.1002/cpe.5962</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploiting historical data: Pruning autotuning spaces and estimating the number of tuning steps
Popis výsledku v původním jazyce
Autotuning, the practice of automatic tuning of applications to provide performance portability, has received increased attention in the research community, especially in high performance computing. Ensuring high performance on a variety of hardware usually means modifications to the code, often via different values of a selected set of parameters, such as tiling size, loop unrolling factor, or data layout. However, the search space of all possible combinations of these parameters can be large, which can result in cases where the benefits of autotuning are outweighed by its cost, especially with dynamic tuning. Therefore, estimating the tuning time in advance or shortening the tuning time is very important in dynamic tuning applications. We have found that certain properties of tuning spaces do not vary much when hardware is changed. In this article, we demonstrate that it is possible to use historical data to reliably predict the number of tuning steps that is necessary to find a well-performing configuration and to reduce the size of the tuning space. We evaluate our hypotheses on a number of HPC benchmarks written in CUDA and OpenCL, using several different generations of GPUs and CPUs.
Název v anglickém jazyce
Exploiting historical data: Pruning autotuning spaces and estimating the number of tuning steps
Popis výsledku anglicky
Autotuning, the practice of automatic tuning of applications to provide performance portability, has received increased attention in the research community, especially in high performance computing. Ensuring high performance on a variety of hardware usually means modifications to the code, often via different values of a selected set of parameters, such as tiling size, loop unrolling factor, or data layout. However, the search space of all possible combinations of these parameters can be large, which can result in cases where the benefits of autotuning are outweighed by its cost, especially with dynamic tuning. Therefore, estimating the tuning time in advance or shortening the tuning time is very important in dynamic tuning applications. We have found that certain properties of tuning spaces do not vary much when hardware is changed. In this article, we demonstrate that it is possible to use historical data to reliably predict the number of tuning steps that is necessary to find a well-performing configuration and to reduce the size of the tuning space. We evaluate our hypotheses on a number of HPC benchmarks written in CUDA and OpenCL, using several different generations of GPUs and CPUs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE
ISSN
1532-0626
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
21
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
000557422400001
EID výsledku v databázi Scopus
2-s2.0-85089146702