Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exploiting historical data: Pruning autotuning spaces and estimating the number of tuning steps

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F20%3A00116267" target="_blank" >RIV/00216224:14610/20:00116267 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/cpe.5962" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/cpe.5962</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/cpe.5962" target="_blank" >10.1002/cpe.5962</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exploiting historical data: Pruning autotuning spaces and estimating the number of tuning steps

  • Popis výsledku v původním jazyce

    Autotuning, the practice of automatic tuning of applications to provide performance portability, has received increased attention in the research community, especially in high performance computing. Ensuring high performance on a variety of hardware usually means modifications to the code, often via different values of a selected set of parameters, such as tiling size, loop unrolling factor, or data layout. However, the search space of all possible combinations of these parameters can be large, which can result in cases where the benefits of autotuning are outweighed by its cost, especially with dynamic tuning. Therefore, estimating the tuning time in advance or shortening the tuning time is very important in dynamic tuning applications. We have found that certain properties of tuning spaces do not vary much when hardware is changed. In this article, we demonstrate that it is possible to use historical data to reliably predict the number of tuning steps that is necessary to find a well-performing configuration and to reduce the size of the tuning space. We evaluate our hypotheses on a number of HPC benchmarks written in CUDA and OpenCL, using several different generations of GPUs and CPUs.

  • Název v anglickém jazyce

    Exploiting historical data: Pruning autotuning spaces and estimating the number of tuning steps

  • Popis výsledku anglicky

    Autotuning, the practice of automatic tuning of applications to provide performance portability, has received increased attention in the research community, especially in high performance computing. Ensuring high performance on a variety of hardware usually means modifications to the code, often via different values of a selected set of parameters, such as tiling size, loop unrolling factor, or data layout. However, the search space of all possible combinations of these parameters can be large, which can result in cases where the benefits of autotuning are outweighed by its cost, especially with dynamic tuning. Therefore, estimating the tuning time in advance or shortening the tuning time is very important in dynamic tuning applications. We have found that certain properties of tuning spaces do not vary much when hardware is changed. In this article, we demonstrate that it is possible to use historical data to reliably predict the number of tuning steps that is necessary to find a well-performing configuration and to reduce the size of the tuning space. We evaluate our hypotheses on a number of HPC benchmarks written in CUDA and OpenCL, using several different generations of GPUs and CPUs.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE

  • ISSN

    1532-0626

  • e-ISSN

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    21

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    1-15

  • Kód UT WoS článku

    000557422400001

  • EID výsledku v databázi Scopus

    2-s2.0-85089146702