An improved model for predicting trip mode distribution using convolution deep learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F21%3A00120713" target="_blank" >RIV/00216224:14610/21:00120713 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11227-020-03394-9" target="_blank" >https://link.springer.com/article/10.1007/s11227-020-03394-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11227-020-03394-9" target="_blank" >10.1007/s11227-020-03394-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An improved model for predicting trip mode distribution using convolution deep learning
Popis výsledku v původním jazyce
Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic, and air pollution. The majority of existing trip mode inference models operate based on human-selected features and traditional machine learning algorithms. However, human-selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.
Název v anglickém jazyce
An improved model for predicting trip mode distribution using convolution deep learning
Popis výsledku anglicky
Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic, and air pollution. The majority of existing trip mode inference models operate based on human-selected features and traditional machine learning algorithms. However, human-selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The Journal of Supercomputing
ISSN
0920-8542
e-ISSN
1573-0484
Svazek periodika
77
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
3638-3652
Kód UT WoS článku
000565025000001
EID výsledku v databázi Scopus
2-s2.0-85089899533