Stream-Based IP Flow Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F21%3A00121615" target="_blank" >RIV/00216224:14610/21:00121615 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stream-Based IP Flow Analysis
Popis výsledku v původním jazyce
As the complexity of Internet services, transmission speed, and data volume increases, current IP flow monitoring and analysis approaches cease to be sufficient, especially within high-speed and large-scale networks. Although IP flows consist only of selected network traffic features, their processing faces high computational demands, analysis delays, and large storage requirements. To address these challenges, we propose to improve the IP flow monitoring workflow by stream-based collection and analysis of IP flows utilizing a distributed data stream processing. This approach requires changing the paradigm of IP flow data monitoring and analysis, which is the main goal of our research. We analyze distributed stream processing systems, for which we design a novel performance benchmark to determine their suitability for stream-based processing of IP flow data. We define a stream-based workflow of IP flow collection and analysis based on the benchmark results, which we also implement as a publicly available and open-source framework Stream4Flow. Furthermore, we propose new analytical methods that leverage the stream-based IP flow data processing approach and extend network monitoring and threat detection capabilities.
Název v anglickém jazyce
Stream-Based IP Flow Analysis
Popis výsledku anglicky
As the complexity of Internet services, transmission speed, and data volume increases, current IP flow monitoring and analysis approaches cease to be sufficient, especially within high-speed and large-scale networks. Although IP flows consist only of selected network traffic features, their processing faces high computational demands, analysis delays, and large storage requirements. To address these challenges, we propose to improve the IP flow monitoring workflow by stream-based collection and analysis of IP flows utilizing a distributed data stream processing. This approach requires changing the paradigm of IP flow data monitoring and analysis, which is the main goal of our research. We analyze distributed stream processing systems, for which we design a novel performance benchmark to determine their suitability for stream-based processing of IP flow data. We define a stream-based workflow of IP flow collection and analysis based on the benchmark results, which we also implement as a publicly available and open-source framework Stream4Flow. Furthermore, we propose new analytical methods that leverage the stream-based IP flow data processing approach and extend network monitoring and threat detection capabilities.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IFIP/IEEE International Symposium on Integrated Network Management, IM 2021
ISBN
9783903176324
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
736-741
Název nakladatele
IFIP Open Digital Library
Místo vydání
Bordeaux, France
Místo konání akce
Bordeaux, France
Datum konání akce
1. 1. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000696801700108