Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Towards a Data-Driven Recommender System for Handling Ransomware and Similar Incidents

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F21%3A00122713" target="_blank" >RIV/00216224:14610/21:00122713 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/abstract/document/9624774" target="_blank" >https://ieeexplore.ieee.org/abstract/document/9624774</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ISI53945.2021.9624774" target="_blank" >10.1109/ISI53945.2021.9624774</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Towards a Data-Driven Recommender System for Handling Ransomware and Similar Incidents

  • Popis výsledku v původním jazyce

    Effective triage is of utmost importance for cybersecurity incident response, namely in handling ransomware or similar incidents in which the attacker may use self-propagating worms, infected files, or email attachments to spread malware. If a device is infected, it is vital to know which other devices can be infected too or are immediately threatened. The number and heterogeneity of devices in today's network complicate situational awareness of incident handlers, and, thus, we propose a recommender system that uses network monitoring data to prioritize devices in the network based on their similarity and proximity to an already infected device. The system enumerates devices in close proximity in terms of physical and logical network topology and sorts them by their similarity given by the similarity of their behavioral profile, fingerprint, or common history. The incident handlers can use the recommendation to promptly prevent malware from spreading or trace the attacker's lateral movement.

  • Název v anglickém jazyce

    Towards a Data-Driven Recommender System for Handling Ransomware and Similar Incidents

  • Popis výsledku anglicky

    Effective triage is of utmost importance for cybersecurity incident response, namely in handling ransomware or similar incidents in which the attacker may use self-propagating worms, infected files, or email attachments to spread malware. If a device is infected, it is vital to know which other devices can be infected too or are immediately threatened. The number and heterogeneity of devices in today's network complicate situational awareness of incident handlers, and, thus, we propose a recommender system that uses network monitoring data to prioritize devices in the network based on their similarity and proximity to an already infected device. The system enumerates devices in close proximity in terms of physical and logical network topology and sorts them by their similarity given by the similarity of their behavioral profile, fingerprint, or common history. The incident handlers can use the recommendation to promptly prevent malware from spreading or trace the attacker's lateral movement.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2021 IEEE International Conference on Intelligence and Security Informatics (ISI)

  • ISBN

    9781665438384

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    1-6

  • Název nakladatele

    IEEE

  • Místo vydání

    San Antonio

  • Místo konání akce

    San Antonio

  • Datum konání akce

    2. 11. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku