Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Encrypted Web Traffic Dataset: Event Logs and Packet Traces

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F22%3A00125749" target="_blank" >RIV/00216224:14610/22:00125749 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.dib.2022.108188" target="_blank" >https://doi.org/10.1016/j.dib.2022.108188</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.dib.2022.108188" target="_blank" >10.1016/j.dib.2022.108188</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Encrypted Web Traffic Dataset: Event Logs and Packet Traces

  • Popis výsledku v původním jazyce

    We present a dataset that captures seven days of monitoring data from eight servers hosting more than 800 sites across a large campus network. The dataset contains data from network monitoring and host-based monitoring. The first set of data are packet traces collected by a probe situated on the network link in front of the web servers. The traces contain encrypted HTTP over TLS 1.2 communication between clients and web servers. The second set of data is an event log captured directly on the web servers. The events are generated by the Internet Information Services (IIS) logging and include both the IIS default features and custom features, such as client port and transferred data volume. Anonymization of all features in the dataset has been carefully carried out to prevent private information leakage while preserving the information value of the dataset. The dataset is suitable mainly for training machine learning techniques for anomaly detection and the identification of relationships between network traffic and events on web servers. We also add tools, settings, and a guide to convert the packet traces to IP flows that are often preferred for network traffic analysis.

  • Název v anglickém jazyce

    Encrypted Web Traffic Dataset: Event Logs and Packet Traces

  • Popis výsledku anglicky

    We present a dataset that captures seven days of monitoring data from eight servers hosting more than 800 sites across a large campus network. The dataset contains data from network monitoring and host-based monitoring. The first set of data are packet traces collected by a probe situated on the network link in front of the web servers. The traces contain encrypted HTTP over TLS 1.2 communication between clients and web servers. The second set of data is an event log captured directly on the web servers. The events are generated by the Internet Information Services (IIS) logging and include both the IIS default features and custom features, such as client port and transferred data volume. Anonymization of all features in the dataset has been carefully carried out to prevent private information leakage while preserving the information value of the dataset. The dataset is suitable mainly for training machine learning techniques for anomaly detection and the identification of relationships between network traffic and events on web servers. We also add tools, settings, and a guide to convert the packet traces to IP flows that are often preferred for network traffic analysis.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Data in Brief

  • ISSN

    2352-3409

  • e-ISSN

  • Svazek periodika

    42

  • Číslo periodika v rámci svazku

    June

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

    1-10

  • Kód UT WoS článku

    000795935500014

  • EID výsledku v databázi Scopus

    2-s2.0-85129507189