Smart Environment for Adaptive Learning of Cybersecurity Skills
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F23%3A00130180" target="_blank" >RIV/00216224:14610/23:00130180 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9926178" target="_blank" >https://ieeexplore.ieee.org/document/9926178</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TLT.2022.3216345" target="_blank" >10.1109/TLT.2022.3216345</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Smart Environment for Adaptive Learning of Cybersecurity Skills
Popis výsledku v původním jazyce
Hands-on computing education requires a realistic learning environment that enables students to gain and deepen their skills. Available learning environments, including virtual and physical labs, provide students with real-world computer systems but rarely adapt the learning environment to individual students of various proficiency and background. We designed a unique and novel smart environment for adaptive training of cybersecurity skills. The environment collects a variety of student data to assign a suitable learning path through the training. To enable such adaptiveness, we proposed, developed, and deployed a new tutor model and a training format. We evaluated the learning environment using two different adaptive trainings attended by 114 students of various proficiency. The results show students were assigned tasks with a more appropriate difficulty, which enabled them to successfully complete the training. Students reported that they enjoyed the training, felt the training difficulty was appropriately designed, and would attend more training sessions like these. Instructors can use the environment for teaching any topic involving real-world computer networks and systems because it is not tailored to particular training. We freely released the software along with exemplary training so that other instructors can adopt the innovations in their teaching practice.
Název v anglickém jazyce
Smart Environment for Adaptive Learning of Cybersecurity Skills
Popis výsledku anglicky
Hands-on computing education requires a realistic learning environment that enables students to gain and deepen their skills. Available learning environments, including virtual and physical labs, provide students with real-world computer systems but rarely adapt the learning environment to individual students of various proficiency and background. We designed a unique and novel smart environment for adaptive training of cybersecurity skills. The environment collects a variety of student data to assign a suitable learning path through the training. To enable such adaptiveness, we proposed, developed, and deployed a new tutor model and a training format. We evaluated the learning environment using two different adaptive trainings attended by 114 students of various proficiency. The results show students were assigned tasks with a more appropriate difficulty, which enabled them to successfully complete the training. Students reported that they enjoyed the training, felt the training difficulty was appropriately designed, and would attend more training sessions like these. Instructors can use the environment for teaching any topic involving real-world computer networks and systems because it is not tailored to particular training. We freely released the software along with exemplary training so that other instructors can adopt the innovations in their teaching practice.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Learning Technologies
ISSN
1939-1382
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
443-456
Kód UT WoS článku
001012684000012
EID výsledku v databázi Scopus
2-s2.0-85140790687