Cyber Key Terrain Identification Using Adjusted PageRank Centrality
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F24%3A00135177" target="_blank" >RIV/00216224:14610/24:00135177 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-56326-3_21" target="_blank" >http://dx.doi.org/10.1007/978-3-031-56326-3_21</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-56326-3_21" target="_blank" >10.1007/978-3-031-56326-3_21</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cyber Key Terrain Identification Using Adjusted PageRank Centrality
Popis výsledku v původním jazyce
The cyber terrain contains devices, network services, cyber personas, and other network entities involved in network operations. Designing a method that automatically identifies key network entities to network operations is challenging. However, such a method is essential for determining which cyber assets should the cyber defense focus on. In this paper, we propose an approach for the classification of IP addresses belonging to cyber key terrain according to their network position using the PageRank centrality computation adjusted by machine learning. We used hill climbing and random walk algorithms to distinguish PageRank’s damping factors based on source and destination ports captured in IP flows. The one-time learning phase on a static data sample allows near-real-time stream-based classification of key hosts from IP flow data in operational conditions without maintaining a complete network graph. We evaluated the approach on a dataset from a cyber defense exercise and on data from the campus network. The results show that cyber key terrain identification using the adjusted computation of centrality is more precise than its original version.
Název v anglickém jazyce
Cyber Key Terrain Identification Using Adjusted PageRank Centrality
Popis výsledku anglicky
The cyber terrain contains devices, network services, cyber personas, and other network entities involved in network operations. Designing a method that automatically identifies key network entities to network operations is challenging. However, such a method is essential for determining which cyber assets should the cyber defense focus on. In this paper, we propose an approach for the classification of IP addresses belonging to cyber key terrain according to their network position using the PageRank centrality computation adjusted by machine learning. We used hill climbing and random walk algorithms to distinguish PageRank’s damping factors based on source and destination ports captured in IP flows. The one-time learning phase on a static data sample allows near-real-time stream-based classification of key hosts from IP flow data in operational conditions without maintaining a complete network graph. We evaluated the approach on a dataset from a cyber defense exercise and on data from the campus network. The results show that cyber key terrain identification using the adjusted computation of centrality is more precise than its original version.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICT Systems Security and Privacy Protection. SEC 2023. IFIP Advances in Information and Communication Technology, vol 679.
ISBN
9783031563256
ISSN
1868-4238
e-ISSN
—
Počet stran výsledku
14
Strana od-do
293-306
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Poznan, Poland
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001294776100021