Optimization of libs measurement parameters via multivariate chemometrics for the classification purpose
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F16%3A00093818" target="_blank" >RIV/00216224:14740/16:00093818 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.esas2016.mke.org.hu/" target="_blank" >http://www.esas2016.mke.org.hu/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimization of libs measurement parameters via multivariate chemometrics for the classification purpose
Popis výsledku v původním jazyce
The outputs of LIBS analysis are multivariate data sets with several thousand to tens of thousands variables in one spectrum. Such a comprehensive set of information contained in a single spectrum offers a challenge for processing all at once, quickly and efficiently. Multivariate analysis makes it possible by reducing large files of the complex, multivariate data to a smaller number of factors describing the differences between the samples. Chemometrics algorithms have already been applied on LIBS data for classification or quantification purposes. When focusing on classification, papers published in the past few years confirm the interest in multivariate classification approach. The most used multivariate classification method is principal component analysis (PCA).
Název v anglickém jazyce
Optimization of libs measurement parameters via multivariate chemometrics for the classification purpose
Popis výsledku anglicky
The outputs of LIBS analysis are multivariate data sets with several thousand to tens of thousands variables in one spectrum. Such a comprehensive set of information contained in a single spectrum offers a challenge for processing all at once, quickly and efficiently. Multivariate analysis makes it possible by reducing large files of the complex, multivariate data to a smaller number of factors describing the differences between the samples. Chemometrics algorithms have already been applied on LIBS data for classification or quantification purposes. When focusing on classification, papers published in the past few years confirm the interest in multivariate classification approach. The most used multivariate classification method is principal component analysis (PCA).
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
CA - Anorganická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0068" target="_blank" >ED1.1.00/02.0068: CEITEC - central european institute of technology</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů