Multiway Array Decomposition of EEG Spectrum: Implications of Its Stability for the Exploration of Large-Scale Brain Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F17%3A00095530" target="_blank" >RIV/00216224:14740/17:00095530 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15110/17:73580497 RIV/00216305:26220/17:PU120920
Výsledek na webu
<a href="https://www.mitpressjournals.org/doi/full/10.1162/NECO_a_00933" target="_blank" >https://www.mitpressjournals.org/doi/full/10.1162/NECO_a_00933</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1162/NECO_a_00933" target="_blank" >10.1162/NECO_a_00933</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiway Array Decomposition of EEG Spectrum: Implications of Its Stability for the Exploration of Large-Scale Brain Networks
Popis výsledku v původním jazyce
The multiway array decomposition methods have been shown to be promising statistical tools for identifying neural activity in the EEG spectrum. They blindly decompose the EEG spectrum into spatial-temporal-spectral patterns by taking into account inherent relationships among signals acquired at different frequencies and sensors. Our study evaluates the stability of spatial-temporal-spectral patterns derived by one particular method called PARAFAC. We focused on patterns’ stability over time and in population and divided the complete dataset containing data from 50 healthy subjects into several subsets. Our results suggest that the patterns are highly stable in time as well as among different subgroups of subjects. Further, we show with simultaneously acquired fMRI data that power fluctuations of some patterns have stable correspondence to hemodynamic fluctuations in large scale brain networks. We did not find such correspondence for power fluctuations in standard frequency bands, i.e. the common way of dealing with EEG data. Altogether our results suggest that the PARAFAC is a suitable method for research in the field of large scale brain networks and their manifestation in EEG signal.
Název v anglickém jazyce
Multiway Array Decomposition of EEG Spectrum: Implications of Its Stability for the Exploration of Large-Scale Brain Networks
Popis výsledku anglicky
The multiway array decomposition methods have been shown to be promising statistical tools for identifying neural activity in the EEG spectrum. They blindly decompose the EEG spectrum into spatial-temporal-spectral patterns by taking into account inherent relationships among signals acquired at different frequencies and sensors. Our study evaluates the stability of spatial-temporal-spectral patterns derived by one particular method called PARAFAC. We focused on patterns’ stability over time and in population and divided the complete dataset containing data from 50 healthy subjects into several subsets. Our results suggest that the patterns are highly stable in time as well as among different subgroups of subjects. Further, we show with simultaneously acquired fMRI data that power fluctuations of some patterns have stable correspondence to hemodynamic fluctuations in large scale brain networks. We did not find such correspondence for power fluctuations in standard frequency bands, i.e. the common way of dealing with EEG data. Altogether our results suggest that the PARAFAC is a suitable method for research in the field of large scale brain networks and their manifestation in EEG signal.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Computation
ISSN
0899-7667
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
968-989
Kód UT WoS článku
000399678100005
EID výsledku v databázi Scopus
—