Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ValTrendsDB: bringing Protein Data Bank validation information closer to the user

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F19%3A00110335" target="_blank" >RIV/00216224:14740/19:00110335 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://elixir-europe.org/events/elixir-excelerate-all-hands-meeting-2019" target="_blank" >https://elixir-europe.org/events/elixir-excelerate-all-hands-meeting-2019</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ValTrendsDB: bringing Protein Data Bank validation information closer to the user

  • Popis výsledku v původním jazyce

    Biomacromolecular structural data is one of the most interesting and important results of modern life sciences. However, this treasure trove is inevitably plagued by errors and discrepancies. The issue of structure data reliability has stimulated the research community to concentrate more on data quality improvement. This provoked us to ask a number of questions that concern the macro perspective of structure quality: How these validation efforts influence the real quality of structural data? And how is structure quality changing over time and which factors affect it? The micro perspective is, however, equally interesting to the community. We wanted to provide an interactive web-based tool that would enable users to visualize quality and features of one or more structures that represent, e.g., a protein family, a fold, structures of an author, or structures published in a journal. We have carried out an analysis of the state of data quality and validation trends. Our research has been based on data from the Protein Data Bank (PDB) and ligand validation data from our validation database ValidatorDB. All entries in the PDB database have been considered. 1,852 meaningful pairs of factors have been assessed for existence of correlation between them. 88 factors have been considered, including structure metadata factors (e.g., year of release, ligand count, residue count), structure quality factors (e.g., clashscore, Ramachandran outlier ratio), and ligand quality factors (e.g., ratio of ligands with topological and chiral problems, average RSCC and RSR). Results are available in the weekly updated ValTrendsDB database.

  • Název v anglickém jazyce

    ValTrendsDB: bringing Protein Data Bank validation information closer to the user

  • Popis výsledku anglicky

    Biomacromolecular structural data is one of the most interesting and important results of modern life sciences. However, this treasure trove is inevitably plagued by errors and discrepancies. The issue of structure data reliability has stimulated the research community to concentrate more on data quality improvement. This provoked us to ask a number of questions that concern the macro perspective of structure quality: How these validation efforts influence the real quality of structural data? And how is structure quality changing over time and which factors affect it? The micro perspective is, however, equally interesting to the community. We wanted to provide an interactive web-based tool that would enable users to visualize quality and features of one or more structures that represent, e.g., a protein family, a fold, structures of an author, or structures published in a journal. We have carried out an analysis of the state of data quality and validation trends. Our research has been based on data from the Protein Data Bank (PDB) and ligand validation data from our validation database ValidatorDB. All entries in the PDB database have been considered. 1,852 meaningful pairs of factors have been assessed for existence of correlation between them. 88 factors have been considered, including structure metadata factors (e.g., year of release, ligand count, residue count), structure quality factors (e.g., clashscore, Ramachandran outlier ratio), and ligand quality factors (e.g., ratio of ligands with topological and chiral problems, average RSCC and RSR). Results are available in the weekly updated ValTrendsDB database.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10608 - Biochemistry and molecular biology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů