Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

4D-CHAINS/autoNOE-Rosetta, an automatedpipeline for rapid NMR structure determination

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F19%3A00113366" target="_blank" >RIV/00216224:14740/19:00113366 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://conference.euroismar2019.org/event/1/contributions/352/contribution.pdf" target="_blank" >https://conference.euroismar2019.org/event/1/contributions/352/contribution.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    4D-CHAINS/autoNOE-Rosetta, an automatedpipeline for rapid NMR structure determination

  • Popis výsledku v původním jazyce

    The automation of NMR structure determination remains a significant bottleneck towards increasing the throughput and accessibility of NMR as a structural biology tool to study proteins. The chief barrier currently is that obtaining NMR assignments at sufficient levels of completeness to accurately define the structures by conventional methods requires a significant amount of spectrometer time (several weeks), and effort by a trained expert (up to several months). We have recently addressed both bottlenecks by presenting a complete pipeline that meets the key objectives of NMR structure determination; minimal data collection, least human intervention, and applicability to large proteins [1]. Key to our approach was the development of 4D-CHAINS algorithm that provides highly accurate and near-complete NMR resonance assignments from only two 4D spectra. In combination with autoNOE-Rosetta, 4D-CHAINS provides a robust approach leveraging a highly automated process to obtain reliable structures in a matter of days [2, 3]. Besides illustrating the merits of our pipeline for timely NMR structural studies, novel concepts in automation will be discussed aiming to harness the powerful advantages of the next-generation NMR spectrometers with magnetic strengths of 1.2 GHz.

  • Název v anglickém jazyce

    4D-CHAINS/autoNOE-Rosetta, an automatedpipeline for rapid NMR structure determination

  • Popis výsledku anglicky

    The automation of NMR structure determination remains a significant bottleneck towards increasing the throughput and accessibility of NMR as a structural biology tool to study proteins. The chief barrier currently is that obtaining NMR assignments at sufficient levels of completeness to accurately define the structures by conventional methods requires a significant amount of spectrometer time (several weeks), and effort by a trained expert (up to several months). We have recently addressed both bottlenecks by presenting a complete pipeline that meets the key objectives of NMR structure determination; minimal data collection, least human intervention, and applicability to large proteins [1]. Key to our approach was the development of 4D-CHAINS algorithm that provides highly accurate and near-complete NMR resonance assignments from only two 4D spectra. In combination with autoNOE-Rosetta, 4D-CHAINS provides a robust approach leveraging a highly automated process to obtain reliable structures in a matter of days [2, 3]. Besides illustrating the merits of our pipeline for timely NMR structural studies, novel concepts in automation will be discussed aiming to harness the powerful advantages of the next-generation NMR spectrometers with magnetic strengths of 1.2 GHz.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů