Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Stable EEG Spatiospectral Sources Using Relative Power as Group-ICA Input

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F19%3A00113467" target="_blank" >RIV/00216224:14740/19:00113467 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-981-10-9038-7_22" target="_blank" >http://dx.doi.org/10.1007/978-981-10-9038-7_22</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-10-9038-7_22" target="_blank" >10.1007/978-981-10-9038-7_22</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Stable EEG Spatiospectral Sources Using Relative Power as Group-ICA Input

  • Popis výsledku v původním jazyce

    Within the last decade, various blind source separation algorithms (BSS) isolating distinct EEG oscillations were derived and implemented. Group Independent Component Analysis (group-ICA) is a promising tool for decomposing spatiospectral EEG maps across multiple subjects. However, researchers are faced with many preprocessing options prior to performing group-ICA, which potentially influences the results. To examine the influence of preprocessing steps, within this article we compare results derived from group-ICA using the absolute power of spatiospectral maps and the relative power of spatiospectral maps. Within a previous study, we used K-means clustering to demonstrate group-ICA of absolute power spatiospectral maps generates sources which are stable across different paradigms (i.e. resting-state, semantic decision, visual oddball) Within the current study, we compare these maps with those obtained using relative power of spatiospectral maps as input to group-ICA. We find that relative EEG power contains 10 stable spatiospectral patterns which were similar to those observed using absolute power as inputs. Interestingly, relative power revealed two c-band (20-40 Hz) patterns which were present across 3 paradigms, but not present using absolute power. This finding suggests that relative power potentially emphasizes low energy signals which are obscured by the high energy low frequency which dominates absolute power measures.

  • Název v anglickém jazyce

    Stable EEG Spatiospectral Sources Using Relative Power as Group-ICA Input

  • Popis výsledku anglicky

    Within the last decade, various blind source separation algorithms (BSS) isolating distinct EEG oscillations were derived and implemented. Group Independent Component Analysis (group-ICA) is a promising tool for decomposing spatiospectral EEG maps across multiple subjects. However, researchers are faced with many preprocessing options prior to performing group-ICA, which potentially influences the results. To examine the influence of preprocessing steps, within this article we compare results derived from group-ICA using the absolute power of spatiospectral maps and the relative power of spatiospectral maps. Within a previous study, we used K-means clustering to demonstrate group-ICA of absolute power spatiospectral maps generates sources which are stable across different paradigms (i.e. resting-state, semantic decision, visual oddball) Within the current study, we compare these maps with those obtained using relative power of spatiospectral maps as input to group-ICA. We find that relative EEG power contains 10 stable spatiospectral patterns which were similar to those observed using absolute power as inputs. Interestingly, relative power revealed two c-band (20-40 Hz) patterns which were present across 3 paradigms, but not present using absolute power. This finding suggests that relative power potentially emphasizes low energy signals which are obscured by the high energy low frequency which dominates absolute power measures.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2010005" target="_blank" >LM2010005: Velká infrastruktura CESNET</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 2

  • ISBN

  • ISSN

    1680-0737

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    125-128

  • Název nakladatele

    SPRINGER

  • Místo vydání

    NEW YORK

  • Místo konání akce

    Prague, CZECH REPUBLIC

  • Datum konání akce

    3. 6. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000449742700022