Theoretical and computational framework for the analysis of the relaxation properties of arbitrary spin systems. Application to high-resolution relaxometry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F20%3A00118364" target="_blank" >RIV/00216224:14740/20:00118364 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1090780720300367?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1090780720300367?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmr.2020.106718" target="_blank" >10.1016/j.jmr.2020.106718</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Theoretical and computational framework for the analysis of the relaxation properties of arbitrary spin systems. Application to high-resolution relaxometry
Popis výsledku v původním jazyce
A wide variety of nuclear magnetic resonance experiments rely on the prediction and analysis of relaxation processes. Recently, innovative approaches have been introduced where the sample travels through a broad range of magnetic fields in the course of the experiment, such as dissolution dynamic nuclear polarization or high-resolution relaxometry. Understanding the relaxation properties of nuclear spin systems over orders of magnitude of magnetic fields is essential to rationalize the results of these experiments. For example, during a high-resolution relaxometry experiment, the absence of control of nuclear spin relaxation pathways during the sample transfers and relaxation delays leads to systematic deviations of polarization decays from an ideal mono-exponential decay with the pure longitudinal relaxation rate. These deviations have to be taken into account to describe quantitatively the dynamics of the system. Here, we present computational tools to (1) calculate analytical expressions of relaxation rates for a broad variety of spin systems and (2) use these analytical expressions to correct the deviations arising in high-resolution relaxometry experiments. These tools lead to a better understanding of nuclear spin relaxation, which is required to improve the sensitivity of many pulse sequences, and to better characterize motions in macromolecules. (C) 2020 Published by Elsevier Inc.
Název v anglickém jazyce
Theoretical and computational framework for the analysis of the relaxation properties of arbitrary spin systems. Application to high-resolution relaxometry
Popis výsledku anglicky
A wide variety of nuclear magnetic resonance experiments rely on the prediction and analysis of relaxation processes. Recently, innovative approaches have been introduced where the sample travels through a broad range of magnetic fields in the course of the experiment, such as dissolution dynamic nuclear polarization or high-resolution relaxometry. Understanding the relaxation properties of nuclear spin systems over orders of magnitude of magnetic fields is essential to rationalize the results of these experiments. For example, during a high-resolution relaxometry experiment, the absence of control of nuclear spin relaxation pathways during the sample transfers and relaxation delays leads to systematic deviations of polarization decays from an ideal mono-exponential decay with the pure longitudinal relaxation rate. These deviations have to be taken into account to describe quantitatively the dynamics of the system. Here, we present computational tools to (1) calculate analytical expressions of relaxation rates for a broad variety of spin systems and (2) use these analytical expressions to correct the deviations arising in high-resolution relaxometry experiments. These tools lead to a better understanding of nuclear spin relaxation, which is required to improve the sensitivity of many pulse sequences, and to better characterize motions in macromolecules. (C) 2020 Published by Elsevier Inc.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Magnetic Resonance
ISSN
1090-7807
e-ISSN
—
Svazek periodika
313
Číslo periodika v rámci svazku
APR
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
106718
Kód UT WoS článku
000524465000008
EID výsledku v databázi Scopus
2-s2.0-85082479035