Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Semi-Automated Ground Truth Segmentation and Phenotyping of Plant Structures Using k-Means Clustering of Eigen-Colors (kmSeg)

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F21%3A00124254" target="_blank" >RIV/00216224:14740/21:00124254 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2077-0472/11/11/1098" target="_blank" >https://www.mdpi.com/2077-0472/11/11/1098</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/agriculture11111098" target="_blank" >10.3390/agriculture11111098</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Semi-Automated Ground Truth Segmentation and Phenotyping of Plant Structures Using k-Means Clustering of Eigen-Colors (kmSeg)

  • Popis výsledku v původním jazyce

    Background. Efficient analysis of large image data produced in greenhouse phenotyping experiments is often challenged by a large variability of optical plant and background appearance which requires advanced classification model methods and reliable ground truth data for their training. In the absence of appropriate computational tools, generation of ground truth data has to be performed manually, which represents a time-consuming task. Methods. Here, we present a efficient GUI-based software solution which reduces the task of plant image segmentation to manual annotation of a small number of image regions automatically pre-segmented using k-means clustering of Eigen-colors (kmSeg). Results. Our experimental results show that in contrast to other supervised clustering techniques k-means enables a computationally efficient pre-segmentation of large plant images in their original resolution. Thereby, the binary segmentation of plant images in fore- and background regions is performed within a few minutes with the average accuracy of 96-99% validated by a direct comparison with ground truth data. Conclusions. Primarily developed for efficient ground truth segmentation and phenotyping of greenhouse-grown plants, the kmSeg tool can be applied for efficient labeling and quantitative analysis of arbitrary images exhibiting distinctive differences between colors of fore- and background structures.

  • Název v anglickém jazyce

    Semi-Automated Ground Truth Segmentation and Phenotyping of Plant Structures Using k-Means Clustering of Eigen-Colors (kmSeg)

  • Popis výsledku anglicky

    Background. Efficient analysis of large image data produced in greenhouse phenotyping experiments is often challenged by a large variability of optical plant and background appearance which requires advanced classification model methods and reliable ground truth data for their training. In the absence of appropriate computational tools, generation of ground truth data has to be performed manually, which represents a time-consuming task. Methods. Here, we present a efficient GUI-based software solution which reduces the task of plant image segmentation to manual annotation of a small number of image regions automatically pre-segmented using k-means clustering of Eigen-colors (kmSeg). Results. Our experimental results show that in contrast to other supervised clustering techniques k-means enables a computationally efficient pre-segmentation of large plant images in their original resolution. Thereby, the binary segmentation of plant images in fore- and background regions is performed within a few minutes with the average accuracy of 96-99% validated by a direct comparison with ground truth data. Conclusions. Primarily developed for efficient ground truth segmentation and phenotyping of greenhouse-grown plants, the kmSeg tool can be applied for efficient labeling and quantitative analysis of arbitrary images exhibiting distinctive differences between colors of fore- and background structures.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_026%2F0008446" target="_blank" >EF16_026/0008446: Integrace signálu a epigenetické reprogramování pro produktivitu rostlin</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    AGRICULTURE-BASEL

  • ISSN

    2077-0472

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    13

  • Strana od-do

    1098

  • Kód UT WoS článku

    000725852100001

  • EID výsledku v databázi Scopus

    2-s2.0-85118852160