Semi-Automated Ground Truth Segmentation and Phenotyping of Plant Structures Using k-Means Clustering of Eigen-Colors (kmSeg)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F21%3A00124254" target="_blank" >RIV/00216224:14740/21:00124254 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2077-0472/11/11/1098" target="_blank" >https://www.mdpi.com/2077-0472/11/11/1098</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/agriculture11111098" target="_blank" >10.3390/agriculture11111098</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semi-Automated Ground Truth Segmentation and Phenotyping of Plant Structures Using k-Means Clustering of Eigen-Colors (kmSeg)
Popis výsledku v původním jazyce
Background. Efficient analysis of large image data produced in greenhouse phenotyping experiments is often challenged by a large variability of optical plant and background appearance which requires advanced classification model methods and reliable ground truth data for their training. In the absence of appropriate computational tools, generation of ground truth data has to be performed manually, which represents a time-consuming task. Methods. Here, we present a efficient GUI-based software solution which reduces the task of plant image segmentation to manual annotation of a small number of image regions automatically pre-segmented using k-means clustering of Eigen-colors (kmSeg). Results. Our experimental results show that in contrast to other supervised clustering techniques k-means enables a computationally efficient pre-segmentation of large plant images in their original resolution. Thereby, the binary segmentation of plant images in fore- and background regions is performed within a few minutes with the average accuracy of 96-99% validated by a direct comparison with ground truth data. Conclusions. Primarily developed for efficient ground truth segmentation and phenotyping of greenhouse-grown plants, the kmSeg tool can be applied for efficient labeling and quantitative analysis of arbitrary images exhibiting distinctive differences between colors of fore- and background structures.
Název v anglickém jazyce
Semi-Automated Ground Truth Segmentation and Phenotyping of Plant Structures Using k-Means Clustering of Eigen-Colors (kmSeg)
Popis výsledku anglicky
Background. Efficient analysis of large image data produced in greenhouse phenotyping experiments is often challenged by a large variability of optical plant and background appearance which requires advanced classification model methods and reliable ground truth data for their training. In the absence of appropriate computational tools, generation of ground truth data has to be performed manually, which represents a time-consuming task. Methods. Here, we present a efficient GUI-based software solution which reduces the task of plant image segmentation to manual annotation of a small number of image regions automatically pre-segmented using k-means clustering of Eigen-colors (kmSeg). Results. Our experimental results show that in contrast to other supervised clustering techniques k-means enables a computationally efficient pre-segmentation of large plant images in their original resolution. Thereby, the binary segmentation of plant images in fore- and background regions is performed within a few minutes with the average accuracy of 96-99% validated by a direct comparison with ground truth data. Conclusions. Primarily developed for efficient ground truth segmentation and phenotyping of greenhouse-grown plants, the kmSeg tool can be applied for efficient labeling and quantitative analysis of arbitrary images exhibiting distinctive differences between colors of fore- and background structures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008446" target="_blank" >EF16_026/0008446: Integrace signálu a epigenetické reprogramování pro produktivitu rostlin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AGRICULTURE-BASEL
ISSN
2077-0472
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
1098
Kód UT WoS článku
000725852100001
EID výsledku v databázi Scopus
2-s2.0-85118852160