BRG1 and NPM-ALK Are Co-Regulated in Anaplastic Large-Cell Lymphoma; BRG1 Is a Potential Therapeutic Target in ALCL
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F22%3A00126467" target="_blank" >RIV/00216224:14740/22:00126467 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2072-6694/14/1/151" target="_blank" >https://www.mdpi.com/2072-6694/14/1/151</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/cancers14010151" target="_blank" >10.3390/cancers14010151</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
BRG1 and NPM-ALK Are Co-Regulated in Anaplastic Large-Cell Lymphoma; BRG1 Is a Potential Therapeutic Target in ALCL
Popis výsledku v původním jazyce
Simple Summary T-cell lymphoma is a cancer of the immune system. One specific sub-type of T-cell lymphoma is a malignancy called anaplastic large cell lymphoma (ALCL), which is distinct from the other forms, as in general, it has a better prognosis. Research conducted to understand why ALCL develops has shown that a specific genetic event occurs, whereby a new protein is created that drives tumour growth. This protein is called nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). Our research, described here, shows that NPM-ALK regulates another protein, called BRG1, to drive proliferation of tumour cells. In turn, when the gene that leads to expression of BRG1 is inactivated, the tumour cells die. These data suggest that therapeutic targeting of BRG1 might be a novel therapy for this form of cancer. Anaplastic large-cell lymphoma (ALCL) is a T-cell malignancy driven in many cases by the product of a chromosomal translocation, nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). NPM-ALK activates a plethora of pathways that drive the hallmarks of cancer, largely signalling pathways normally associated with cytokine and/or T-cell receptor-induced signalling. However, NPM-ALK is also located in the nucleus and its functions in this cellular compartment for the most part remain to be determined. We show that ALCL cell lines and primary patient tumours express the transcriptional activator BRG1 in a NPM-ALK-dependent manner. NPM-ALK regulates expression of BRG1 by post-translational mechanisms dependent on its kinase activity, protecting it from proteasomal degradation. Furthermore, we show that BRG1 drives a transcriptional programme associated with cell cycle progression. In turn, inhibition of BRG1 expression with specific shRNA decreases cell viability, suggesting that it may represent a key therapeutic target for the treatment of ALCL.
Název v anglickém jazyce
BRG1 and NPM-ALK Are Co-Regulated in Anaplastic Large-Cell Lymphoma; BRG1 Is a Potential Therapeutic Target in ALCL
Popis výsledku anglicky
Simple Summary T-cell lymphoma is a cancer of the immune system. One specific sub-type of T-cell lymphoma is a malignancy called anaplastic large cell lymphoma (ALCL), which is distinct from the other forms, as in general, it has a better prognosis. Research conducted to understand why ALCL develops has shown that a specific genetic event occurs, whereby a new protein is created that drives tumour growth. This protein is called nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). Our research, described here, shows that NPM-ALK regulates another protein, called BRG1, to drive proliferation of tumour cells. In turn, when the gene that leads to expression of BRG1 is inactivated, the tumour cells die. These data suggest that therapeutic targeting of BRG1 might be a novel therapy for this form of cancer. Anaplastic large-cell lymphoma (ALCL) is a T-cell malignancy driven in many cases by the product of a chromosomal translocation, nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). NPM-ALK activates a plethora of pathways that drive the hallmarks of cancer, largely signalling pathways normally associated with cytokine and/or T-cell receptor-induced signalling. However, NPM-ALK is also located in the nucleus and its functions in this cellular compartment for the most part remain to be determined. We show that ALCL cell lines and primary patient tumours express the transcriptional activator BRG1 in a NPM-ALK-dependent manner. NPM-ALK regulates expression of BRG1 by post-translational mechanisms dependent on its kinase activity, protecting it from proteasomal degradation. Furthermore, we show that BRG1 drives a transcriptional programme associated with cell cycle progression. In turn, inhibition of BRG1 expression with specific shRNA decreases cell viability, suggesting that it may represent a key therapeutic target for the treatment of ALCL.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30204 - Oncology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CANCERS
ISSN
2072-6694
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
151
Kód UT WoS článku
000741380300001
EID výsledku v databázi Scopus
2-s2.0-85121802278