Deep learning and direct sequencing of labeled RNA captures transcriptome dynamics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F24%3A00137071" target="_blank" >RIV/00216224:14740/24:00137071 - isvavai.cz</a>
Výsledek na webu
<a href="https://academic.oup.com/nargab/article/6/3/lqae116/7744945" target="_blank" >https://academic.oup.com/nargab/article/6/3/lqae116/7744945</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/nargab/lqae116" target="_blank" >10.1093/nargab/lqae116</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep learning and direct sequencing of labeled RNA captures transcriptome dynamics
Popis výsledku v původním jazyce
In eukaryotes, genes produce a variety of distinct RNA isoforms, each with potentially unique protein products, coding potential or regulatory signals such as poly(A) tail and nucleotide modifications. Assessing the kinetics of RNA isoform metabolism, such as transcription and decay rates, is essential for unraveling gene regulation. However, it is currently impeded by lack of methods that can differentiate between individual isoforms. Here, we introduce RNAkinet, a deep convolutional and recurrent neural network, to detect nascent RNA molecules following metabolic labeling with the nucleoside analog 5-ethynyl uridine and long-read, direct RNA sequencing with nanopores. RNAkinet processes electrical signals from nanopore sequencing directly and distinguishes nascent from pre-existing RNA molecules. Our results show that RNAkinet prediction performance generalizes in various cell types and organisms and can be used to quantify RNA isoform half-lives. RNAkinet is expected to enable the identification of the kinetic parameters of RNA isoforms and to facilitate studies of RNA metabolism and the regulatory elements that influence it.
Název v anglickém jazyce
Deep learning and direct sequencing of labeled RNA captures transcriptome dynamics
Popis výsledku anglicky
In eukaryotes, genes produce a variety of distinct RNA isoforms, each with potentially unique protein products, coding potential or regulatory signals such as poly(A) tail and nucleotide modifications. Assessing the kinetics of RNA isoform metabolism, such as transcription and decay rates, is essential for unraveling gene regulation. However, it is currently impeded by lack of methods that can differentiate between individual isoforms. Here, we introduce RNAkinet, a deep convolutional and recurrent neural network, to detect nascent RNA molecules following metabolic labeling with the nucleoside analog 5-ethynyl uridine and long-read, direct RNA sequencing with nanopores. RNAkinet processes electrical signals from nanopore sequencing directly and distinguishes nascent from pre-existing RNA molecules. Our results show that RNAkinet prediction performance generalizes in various cell types and organisms and can be used to quantify RNA isoform half-lives. RNAkinet is expected to enable the identification of the kinetic parameters of RNA isoforms and to facilitate studies of RNA metabolism and the regulatory elements that influence it.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NAR Genomics and Bioinformatics
ISSN
2631-9268
e-ISSN
2631-9268
Svazek periodika
6
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
001300170800001
EID výsledku v databázi Scopus
2-s2.0-85202977843