Suppressing on-stream deactivation of CuSiO2 catalysts in the dehydrogenation of bioethanol to acetaldehyde
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F24%3A00138738" target="_blank" >RIV/00216224:14740/24:00138738 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2024/cy/d4cy00646a" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2024/cy/d4cy00646a</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d4cy00646a" target="_blank" >10.1039/d4cy00646a</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Suppressing on-stream deactivation of CuSiO2 catalysts in the dehydrogenation of bioethanol to acetaldehyde
Popis výsledku v původním jazyce
Bioethanol upgrading to valuable platform molecules is a cornerstone of the emerging "integrated biorefinery" concept. Although active catalysts have already been developed for the non-oxidative dehydrogenation of ethanol to acetaldehyde, their rapid deactivation - through coking and sintering - is still an unsolved challenge. Herein, we study a 7.4 wt% Cu-SiO2 catalyst at 573 K for 8 or 24 hours under stable ethanol feed, we report in-depth characterization of the spent catalysts to univocally describe deactivation phenomena, and we propose reaction engineering procedures based on gas co-feed (O-2 or H-2) to decisively enhance the catalyst stability. Under the standard conditions, the pristine catalyst undergoes fast deactivation, as conversion drops from similar to 95% to similar to 25% in about 8 hours. While sintering is shown to occur during the reaction, we demonstrate that the main cause of deactivation is actually the accumulation of carbonaceous deposits. Even if such deactivation is shown to be reversible (regeneration by oxidative treatment), it is more attractive to prevent it from happening. Studying the effect of gas doping, we show that introducing a small fraction of oxygen (0.44 vol%) leads to a marked decrease of the extent of coking and stabilization of catalytic activity at a much higher conversion level (75% after 24 h). A slightly higher O2 concentration (1.77 vol%) leads to complete stabilization of the ethanol conversion (90% after 24 h), but concomitantly provokes a slight drop in acetaldehyde selectivity. With the findings of this study, with optimized reaction conditions and an ameliorated catalyst formulation, an outstanding acetaldehyde productivity (2.9 gaca gcat(-1) h(-1)) was maintained fully stable for 24 h.
Název v anglickém jazyce
Suppressing on-stream deactivation of CuSiO2 catalysts in the dehydrogenation of bioethanol to acetaldehyde
Popis výsledku anglicky
Bioethanol upgrading to valuable platform molecules is a cornerstone of the emerging "integrated biorefinery" concept. Although active catalysts have already been developed for the non-oxidative dehydrogenation of ethanol to acetaldehyde, their rapid deactivation - through coking and sintering - is still an unsolved challenge. Herein, we study a 7.4 wt% Cu-SiO2 catalyst at 573 K for 8 or 24 hours under stable ethanol feed, we report in-depth characterization of the spent catalysts to univocally describe deactivation phenomena, and we propose reaction engineering procedures based on gas co-feed (O-2 or H-2) to decisively enhance the catalyst stability. Under the standard conditions, the pristine catalyst undergoes fast deactivation, as conversion drops from similar to 95% to similar to 25% in about 8 hours. While sintering is shown to occur during the reaction, we demonstrate that the main cause of deactivation is actually the accumulation of carbonaceous deposits. Even if such deactivation is shown to be reversible (regeneration by oxidative treatment), it is more attractive to prevent it from happening. Studying the effect of gas doping, we show that introducing a small fraction of oxygen (0.44 vol%) leads to a marked decrease of the extent of coking and stabilization of catalytic activity at a much higher conversion level (75% after 24 h). A slightly higher O2 concentration (1.77 vol%) leads to complete stabilization of the ethanol conversion (90% after 24 h), but concomitantly provokes a slight drop in acetaldehyde selectivity. With the findings of this study, with optimized reaction conditions and an ameliorated catalyst formulation, an outstanding acetaldehyde productivity (2.9 gaca gcat(-1) h(-1)) was maintained fully stable for 24 h.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Catalysis Science and Technology
ISSN
2044-4753
e-ISSN
2044-4761
Svazek periodika
14
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
4912-4926
Kód UT WoS článku
001276569200001
EID výsledku v databázi Scopus
2-s2.0-85199506964