Structure-based prediction of T cell receptor recognition of unseen epitopes using TCRen
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F24%3A00139165" target="_blank" >RIV/00216224:14740/24:00139165 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s43588-024-00653-0" target="_blank" >https://www.nature.com/articles/s43588-024-00653-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s43588-024-00653-0" target="_blank" >10.1038/s43588-024-00653-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structure-based prediction of T cell receptor recognition of unseen epitopes using TCRen
Popis výsledku v původním jazyce
T cell receptor (TCR) recognition of foreign peptides presented by major histocompatibility complex protein is a major event in triggering the adaptive immune response to pathogens or cancer. The prediction of TCR-peptide interactions has great importance for therapy of cancer as well as infectious and autoimmune diseases but remains a major challenge, particularly for novel (unseen) peptide epitopes. Here we present TCRen, a structure-based method for ranking candidate unseen epitopes for a given TCR. The first stage of the TCRen pipeline is modeling of the TCR-peptide-major histocompatibility complex structure. Then a TCR-peptide residue contact map is extracted from this structure and used to rank all candidate epitopes on the basis of an interaction score with the target TCR. Scoring is performed using an energy potential derived from the statistics of TCR-peptide contact preferences in existing crystal structures. We show that TCRen has high performance in discriminating cognate versus unrelated peptides and can facilitate the identification of cancer neoepitopes recognized by tumor-infiltrating lymphocytes.
Název v anglickém jazyce
Structure-based prediction of T cell receptor recognition of unseen epitopes using TCRen
Popis výsledku anglicky
T cell receptor (TCR) recognition of foreign peptides presented by major histocompatibility complex protein is a major event in triggering the adaptive immune response to pathogens or cancer. The prediction of TCR-peptide interactions has great importance for therapy of cancer as well as infectious and autoimmune diseases but remains a major challenge, particularly for novel (unseen) peptide epitopes. Here we present TCRen, a structure-based method for ranking candidate unseen epitopes for a given TCR. The first stage of the TCRen pipeline is modeling of the TCR-peptide-major histocompatibility complex structure. Then a TCR-peptide residue contact map is extracted from this structure and used to rank all candidate epitopes on the basis of an interaction score with the target TCR. Scoring is performed using an energy potential derived from the statistics of TCR-peptide contact preferences in existing crystal structures. We show that TCRen has high performance in discriminating cognate versus unrelated peptides and can facilitate the identification of cancer neoepitopes recognized by tumor-infiltrating lymphocytes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NATURE COMPUTATIONAL SCIENCE
ISSN
2662-8457
e-ISSN
2662-8457
Svazek periodika
4
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
001268935300002
EID výsledku v databázi Scopus
2-s2.0-85198063639