Arrhenian and non-Arrhenian temperature dependent relaxation time development in the solid-liquid transition area of amourphous bodies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F13%3A39897081" target="_blank" >RIV/00216275:25310/13:39897081 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Arrhenian and non-Arrhenian temperature dependent relaxation time development in the solid-liquid transition area of amourphous bodies
Popis výsledku v původním jazyce
In the model presented below, the solid and liquid phases of amorphous bodies are characterized, on the micro- level, by two types of oscillators, which are connected to two types of different mathematics. The sources of mathematics are coming from: 1From the theory of deterministic chaos and, 2. From the theory of linear viscoelasticity. It is accepted that amorphous liquid is formed by domains, which group the linear oscillators into the form of icebergs , and which are inside of those icebergs arranged into the serial connection of viscoeastic elements. The size of the linear connection within the domains is characterized by the number ?n? which is, in process of cooling, growing. The linear viscoelastic behavior of individual serial connection is bonded with the individual relaxation processes ?, ?, ?. Only the process ?alpha? process the property of growth on cooling to infinity. Therefore the corresponding relaxation time ?? for the infinite connection ?n? of Voight or Maxwell el
Název v anglickém jazyce
Arrhenian and non-Arrhenian temperature dependent relaxation time development in the solid-liquid transition area of amourphous bodies
Popis výsledku anglicky
In the model presented below, the solid and liquid phases of amorphous bodies are characterized, on the micro- level, by two types of oscillators, which are connected to two types of different mathematics. The sources of mathematics are coming from: 1From the theory of deterministic chaos and, 2. From the theory of linear viscoelasticity. It is accepted that amorphous liquid is formed by domains, which group the linear oscillators into the form of icebergs , and which are inside of those icebergs arranged into the serial connection of viscoeastic elements. The size of the linear connection within the domains is characterized by the number ?n? which is, in process of cooling, growing. The linear viscoelastic behavior of individual serial connection is bonded with the individual relaxation processes ?, ?, ?. Only the process ?alpha? process the property of growth on cooling to infinity. Therefore the corresponding relaxation time ?? for the infinite connection ?n? of Voight or Maxwell el
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CF - Fyzikální chemie a teoretická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physics Procedia
ISSN
1875-3892
e-ISSN
—
Svazek periodika
44
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
60-66
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—