Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Mn-Zn Ferrite Nanoparticles With Silica and Titania Coatings: Synthesis, Transverse Relaxivity, and Cytotoxicity

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F17%3A39910743" target="_blank" >RIV/00216275:25310/17:39910743 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ieeexplore.ieee.org/document/7962245/" target="_blank" >http://ieeexplore.ieee.org/document/7962245/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TMAG.2017.2721365" target="_blank" >10.1109/TMAG.2017.2721365</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Mn-Zn Ferrite Nanoparticles With Silica and Titania Coatings: Synthesis, Transverse Relaxivity, and Cytotoxicity

  • Popis výsledku v původním jazyce

    Mn-Zn ferrite nanoparticles of composition Mn0.61Zn0.42Fe1.97O4 and mean size of crystallites d(XRD) = 11 nm are synthesized under hydrothermal conditions as a single-phase product. Subsequently, two coated samples are prepared by encapsulation of the ferrite particles into silica and titania. Transmission electron microscopy confirms the core-shell structure of the products and shows that the cores are actually formed by small clusters of ferrite crystallites. Powder X-ray diffraction, combined with experimental hydrothermal treatment of the titania-coated product, demonstrates that the titania coating is amorphous but can easily be transformed into anatase. The colloidal stability of nanoparticles in water is evidenced by dynamic light scattering, and the respective hydrodynamic sizes are d(Z) = 87 and 157 nm for the silica-coated and titania-coated particles. The colloidal behavior is confirmed based on the measurements of zeta potential, whose negative values lead to strong Coulombic repulsion among coated particles. Magnetic measurements on bare and coated particles show high magnetization of Mn0.61Zn0.42Fe1.97O4 cores and superparamagnetic state at room temperature. The relaxometric study on aqueous suspensions in magnetic fields of 0.5 and 11.75 T reveals high transverse relaxivity of the samples and two distinct forms of its temperature dependence, which are analyzed with respect to the role of temperature-dependent parameters, that is, the diffusion of water and the magnetization of ferrite cores. Finally, careful evaluation of cytotoxicity of coated particles is carried out by using two different methods, namely, the determination of viability and proliferation of Jurkat cells and the real-time monitoring of attachment and proliferation of A549 cells. In the studied range of concentrations, the viability and proliferation of suspension cells are not affected, and only negligible effects are detected in the cell index of adherent cells.

  • Název v anglickém jazyce

    Mn-Zn Ferrite Nanoparticles With Silica and Titania Coatings: Synthesis, Transverse Relaxivity, and Cytotoxicity

  • Popis výsledku anglicky

    Mn-Zn ferrite nanoparticles of composition Mn0.61Zn0.42Fe1.97O4 and mean size of crystallites d(XRD) = 11 nm are synthesized under hydrothermal conditions as a single-phase product. Subsequently, two coated samples are prepared by encapsulation of the ferrite particles into silica and titania. Transmission electron microscopy confirms the core-shell structure of the products and shows that the cores are actually formed by small clusters of ferrite crystallites. Powder X-ray diffraction, combined with experimental hydrothermal treatment of the titania-coated product, demonstrates that the titania coating is amorphous but can easily be transformed into anatase. The colloidal stability of nanoparticles in water is evidenced by dynamic light scattering, and the respective hydrodynamic sizes are d(Z) = 87 and 157 nm for the silica-coated and titania-coated particles. The colloidal behavior is confirmed based on the measurements of zeta potential, whose negative values lead to strong Coulombic repulsion among coated particles. Magnetic measurements on bare and coated particles show high magnetization of Mn0.61Zn0.42Fe1.97O4 cores and superparamagnetic state at room temperature. The relaxometric study on aqueous suspensions in magnetic fields of 0.5 and 11.75 T reveals high transverse relaxivity of the samples and two distinct forms of its temperature dependence, which are analyzed with respect to the role of temperature-dependent parameters, that is, the diffusion of water and the magnetization of ferrite cores. Finally, careful evaluation of cytotoxicity of coated particles is carried out by using two different methods, namely, the determination of viability and proliferation of Jurkat cells and the real-time monitoring of attachment and proliferation of A549 cells. In the studied range of concentrations, the viability and proliferation of suspension cells are not affected, and only negligible effects are detected in the cell index of adherent cells.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10402 - Inorganic and nuclear chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IEEE Transactions on Magnetics

  • ISBN

  • ISSN

    0018-9464

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    8

  • Strana od-do

    "5300908-1"-"5300908-8"

  • Název nakladatele

    IEEE (Institute of Electrical and Electronics Engineers)

  • Místo vydání

    New York

  • Místo konání akce

    Dublin

  • Datum konání akce

    24. 4. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000413981300227