Geometry optimization of zirconium sulfophenylphosphonate layers by molecular simulation methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F18%3A39912861" target="_blank" >RIV/00216275:25310/18:39912861 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61389013:_____/18:00484581 RIV/00216208:11320/18:10384585
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007%2Fs00894-017-3549-8.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2Fs00894-017-3549-8.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00894-017-3549-8" target="_blank" >10.1007/s00894-017-3549-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Geometry optimization of zirconium sulfophenylphosphonate layers by molecular simulation methods
Popis výsledku v původním jazyce
Classical molecular simulation methods were used for a detailed structural description of zirconium 4-sulfophenylphosphonate and zirconium phenylphosphonate 4-sulfophenylphosphonates with general formula Zr(HO3SC6H4PO3)(x)(C6H5PO3)(2-x)center dot yH(2)O (x = 0.7-2; y = 0 or 2). First, models describing the structure of zirconium 4-sulfophenylphosphonate (x = 2) were calculated for the hydrated (y = 2) and dehydrated (y = 0) compounds. Subsequently, models for two mixed zirconium phenylphosphonate 4-sulfophenylphosphonates (x = 1.3 and 0.7) were calculated. Optimized models suggest that the presence of water molecules between sulfo groups creates a water-sulfonate layer with a system of hydrogen bonds. We suppose that this arrangement is the reason for a higher proton conductivity of the hydrated samples compared to dehydrated samples. When the water molecules are removed, a small decrease in the basal spacing (around 0.06 angstrom) is observed. This behavior is confirmed by the simulated models, where no significant changes in the structure on dehydration were observed except the absence of the water molecules and a lower number of hydrogen bonds between two adjacent sulfonate sheets. Due to the good crystallinity of the samples and the presence of sharp non-basal peaks in their X-ray diffraction patterns, Miller indices of the non-basal peaks in the diffraction patterns calculated from the models can be compared with those found in the experimental data. This allowed us to precisely describe for example (15 5-2) planes, from which mutual distances of the phenyl rings were determined to be 2.62 angstrom.
Název v anglickém jazyce
Geometry optimization of zirconium sulfophenylphosphonate layers by molecular simulation methods
Popis výsledku anglicky
Classical molecular simulation methods were used for a detailed structural description of zirconium 4-sulfophenylphosphonate and zirconium phenylphosphonate 4-sulfophenylphosphonates with general formula Zr(HO3SC6H4PO3)(x)(C6H5PO3)(2-x)center dot yH(2)O (x = 0.7-2; y = 0 or 2). First, models describing the structure of zirconium 4-sulfophenylphosphonate (x = 2) were calculated for the hydrated (y = 2) and dehydrated (y = 0) compounds. Subsequently, models for two mixed zirconium phenylphosphonate 4-sulfophenylphosphonates (x = 1.3 and 0.7) were calculated. Optimized models suggest that the presence of water molecules between sulfo groups creates a water-sulfonate layer with a system of hydrogen bonds. We suppose that this arrangement is the reason for a higher proton conductivity of the hydrated samples compared to dehydrated samples. When the water molecules are removed, a small decrease in the basal spacing (around 0.06 angstrom) is observed. This behavior is confirmed by the simulated models, where no significant changes in the structure on dehydration were observed except the absence of the water molecules and a lower number of hydrogen bonds between two adjacent sulfonate sheets. Due to the good crystallinity of the samples and the presence of sharp non-basal peaks in their X-ray diffraction patterns, Miller indices of the non-basal peaks in the diffraction patterns calculated from the models can be compared with those found in the experimental data. This allowed us to precisely describe for example (15 5-2) planes, from which mutual distances of the phenyl rings were determined to be 2.62 angstrom.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Molecular Modeling
ISSN
1610-2940
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
"10-1"-"10-12"
Kód UT WoS článku
000422667900027
EID výsledku v databázi Scopus
2-s2.0-85037740079