Electrical transport in mixed ion-polaron glasses
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F19%3A39914964" target="_blank" >RIV/00216275:25310/19:39914964 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ingentaconnect.com/content/sgt/ejgst/2019/00000060/00000003/art00001" target="_blank" >https://www.ingentaconnect.com/content/sgt/ejgst/2019/00000060/00000003/art00001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13036/17533562.60.3.038" target="_blank" >10.13036/17533562.60.3.038</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electrical transport in mixed ion-polaron glasses
Popis výsledku v původním jazyce
Mixed ionic-polaronic transport has been investigated in two series of glasses containing Na2O and WO3/MoO3, namely xWO(3) -(30-0.5x)Na2O-(30-0.5x)ZnO-40P(2)O(5) and xMoO(3)-(30-0.5x)Na2O-(30-0.5x)ZnO-40P(2)O(5), 0 <= x <= 60(mol%). The changes in the conduction mechanism with the systematic alternation of the glass composition have been analysed in correlation to the structural modifications and variations of molybdenum and tungsten in different oxidation states. Raman spectra revealed the clustering of WO(6 )units by the formation of W-O-W bonds in glasses with increasing WO3 content while the co-existence of MoO4 and MoO6 units is evidenced in glasses containing MoO3. In particular, the dominant molybdenum coordination in glasses with highest MoO3 content is four suggesting the absence of clustering of molybdate units. The DC conductivity of glasses with <= 20 mol% of WO3 and <= 30 mol% of MoO3 is almost identical due to the dominance of ionic conductivity. In this compositional region, the introduction of tungstate and molybdate units in the glass structure increases the mobility of sodium ions and compensates the decrease in sodium number density. The significant difference in conductivity is observed for glasses with higher WO3 and MoO3 content. While for glasses containing MoO3 the conductivity remains almost constant up to 50 mol% of MoO3, it constantly increases for almost six orders of magnitude for glasses with up to 60 mol% of WO3. The behaviour of DC conductivity for glasses containing MoO3 suggests the transition from ionic to polaronic conduction mechanisms which transport pathways are independent of each other. On the other hand, significantly higher conductivity of glasses with higher amounts of WO3 originates from a huge polaronic contribution, much larger than in a case of MoO3. Such a high conductivity is a consequence of the clustering of tungstate units which forms continuous W-O-W-O-W bridges which significantly facilitate polaronic transport.
Název v anglickém jazyce
Electrical transport in mixed ion-polaron glasses
Popis výsledku anglicky
Mixed ionic-polaronic transport has been investigated in two series of glasses containing Na2O and WO3/MoO3, namely xWO(3) -(30-0.5x)Na2O-(30-0.5x)ZnO-40P(2)O(5) and xMoO(3)-(30-0.5x)Na2O-(30-0.5x)ZnO-40P(2)O(5), 0 <= x <= 60(mol%). The changes in the conduction mechanism with the systematic alternation of the glass composition have been analysed in correlation to the structural modifications and variations of molybdenum and tungsten in different oxidation states. Raman spectra revealed the clustering of WO(6 )units by the formation of W-O-W bonds in glasses with increasing WO3 content while the co-existence of MoO4 and MoO6 units is evidenced in glasses containing MoO3. In particular, the dominant molybdenum coordination in glasses with highest MoO3 content is four suggesting the absence of clustering of molybdate units. The DC conductivity of glasses with <= 20 mol% of WO3 and <= 30 mol% of MoO3 is almost identical due to the dominance of ionic conductivity. In this compositional region, the introduction of tungstate and molybdate units in the glass structure increases the mobility of sodium ions and compensates the decrease in sodium number density. The significant difference in conductivity is observed for glasses with higher WO3 and MoO3 content. While for glasses containing MoO3 the conductivity remains almost constant up to 50 mol% of MoO3, it constantly increases for almost six orders of magnitude for glasses with up to 60 mol% of WO3. The behaviour of DC conductivity for glasses containing MoO3 suggests the transition from ionic to polaronic conduction mechanisms which transport pathways are independent of each other. On the other hand, significantly higher conductivity of glasses with higher amounts of WO3 originates from a huge polaronic contribution, much larger than in a case of MoO3. Such a high conductivity is a consequence of the clustering of tungstate units which forms continuous W-O-W-O-W bridges which significantly facilitate polaronic transport.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B
ISSN
1753-3562
e-ISSN
—
Svazek periodika
60
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
97-103
Kód UT WoS článku
000478714300001
EID výsledku v databázi Scopus
—