Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

FEST - New Procedure for Evaluation of Sensitivity Experiments

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F20%3A39916511" target="_blank" >RIV/00216275:25310/20:39916511 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/full/10.1002/prep.202000120" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/prep.202000120</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/prep.202000120" target="_blank" >10.1002/prep.202000120</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    FEST - New Procedure for Evaluation of Sensitivity Experiments

  • Popis výsledku v původním jazyce

    The sensitivity of energetic materials to initiating stimuli is one of the tests with binary response. Usually, there is not a single sharp boundary between energy levels causing initiation and not causing initiation. Instead, there is an interval of energies causing the initiation with certain probability, called the sensitivity curve. In the past, various methods were developed to determine the whole sensitivity curve, or its important points (e. g. Bruceton staircase, Robbins-Monroe, Langlie, Probit analysis, or Neyer&apos;sD-optimal test, 3pod). All these methods, despite frequently used, have their limitations. We would like to introduce the new method/algorithm, called FEST (Fast and Efficient Sensitivity Testing), for the determination of a sensitivity curve. The sensitivity curve is represented by the cumulative distribution function for a lognormal distribution. The calculation of the level for the next shot is similar to Neyer&apos;s approach in the beginning of the test procedure. Later, after the overlap is reached and therefore unique maximum likelihood estimates for mu and sigma exist, the next shot level is calculated from these parameters using two user-defined constants. These constants can be used to shift the levels of testing into the area of interest of the sensitivity curve. In this article, the algorithm is introduced, its convergence to real values is supported by simple Monte Carlo simulations, and a real life example (determination of sensitivity to electrostatic discharge for a pyrotechnic mixture) is presented.

  • Název v anglickém jazyce

    FEST - New Procedure for Evaluation of Sensitivity Experiments

  • Popis výsledku anglicky

    The sensitivity of energetic materials to initiating stimuli is one of the tests with binary response. Usually, there is not a single sharp boundary between energy levels causing initiation and not causing initiation. Instead, there is an interval of energies causing the initiation with certain probability, called the sensitivity curve. In the past, various methods were developed to determine the whole sensitivity curve, or its important points (e. g. Bruceton staircase, Robbins-Monroe, Langlie, Probit analysis, or Neyer&apos;sD-optimal test, 3pod). All these methods, despite frequently used, have their limitations. We would like to introduce the new method/algorithm, called FEST (Fast and Efficient Sensitivity Testing), for the determination of a sensitivity curve. The sensitivity curve is represented by the cumulative distribution function for a lognormal distribution. The calculation of the level for the next shot is similar to Neyer&apos;s approach in the beginning of the test procedure. Later, after the overlap is reached and therefore unique maximum likelihood estimates for mu and sigma exist, the next shot level is calculated from these parameters using two user-defined constants. These constants can be used to shift the levels of testing into the area of interest of the sensitivity curve. In this article, the algorithm is introduced, its convergence to real values is supported by simple Monte Carlo simulations, and a real life example (determination of sensitivity to electrostatic discharge for a pyrotechnic mixture) is presented.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Propellants Explosives Pyrotechnics

  • ISSN

    0721-3115

  • e-ISSN

  • Svazek periodika

    45

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    7

  • Strana od-do

    1813-1818

  • Kód UT WoS článku

    000555322400001

  • EID výsledku v databázi Scopus

    2-s2.0-85088951666