FEST - New Procedure for Evaluation of Sensitivity Experiments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F20%3A39916511" target="_blank" >RIV/00216275:25310/20:39916511 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/prep.202000120" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/prep.202000120</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/prep.202000120" target="_blank" >10.1002/prep.202000120</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
FEST - New Procedure for Evaluation of Sensitivity Experiments
Popis výsledku v původním jazyce
The sensitivity of energetic materials to initiating stimuli is one of the tests with binary response. Usually, there is not a single sharp boundary between energy levels causing initiation and not causing initiation. Instead, there is an interval of energies causing the initiation with certain probability, called the sensitivity curve. In the past, various methods were developed to determine the whole sensitivity curve, or its important points (e. g. Bruceton staircase, Robbins-Monroe, Langlie, Probit analysis, or Neyer'sD-optimal test, 3pod). All these methods, despite frequently used, have their limitations. We would like to introduce the new method/algorithm, called FEST (Fast and Efficient Sensitivity Testing), for the determination of a sensitivity curve. The sensitivity curve is represented by the cumulative distribution function for a lognormal distribution. The calculation of the level for the next shot is similar to Neyer's approach in the beginning of the test procedure. Later, after the overlap is reached and therefore unique maximum likelihood estimates for mu and sigma exist, the next shot level is calculated from these parameters using two user-defined constants. These constants can be used to shift the levels of testing into the area of interest of the sensitivity curve. In this article, the algorithm is introduced, its convergence to real values is supported by simple Monte Carlo simulations, and a real life example (determination of sensitivity to electrostatic discharge for a pyrotechnic mixture) is presented.
Název v anglickém jazyce
FEST - New Procedure for Evaluation of Sensitivity Experiments
Popis výsledku anglicky
The sensitivity of energetic materials to initiating stimuli is one of the tests with binary response. Usually, there is not a single sharp boundary between energy levels causing initiation and not causing initiation. Instead, there is an interval of energies causing the initiation with certain probability, called the sensitivity curve. In the past, various methods were developed to determine the whole sensitivity curve, or its important points (e. g. Bruceton staircase, Robbins-Monroe, Langlie, Probit analysis, or Neyer'sD-optimal test, 3pod). All these methods, despite frequently used, have their limitations. We would like to introduce the new method/algorithm, called FEST (Fast and Efficient Sensitivity Testing), for the determination of a sensitivity curve. The sensitivity curve is represented by the cumulative distribution function for a lognormal distribution. The calculation of the level for the next shot is similar to Neyer's approach in the beginning of the test procedure. Later, after the overlap is reached and therefore unique maximum likelihood estimates for mu and sigma exist, the next shot level is calculated from these parameters using two user-defined constants. These constants can be used to shift the levels of testing into the area of interest of the sensitivity curve. In this article, the algorithm is introduced, its convergence to real values is supported by simple Monte Carlo simulations, and a real life example (determination of sensitivity to electrostatic discharge for a pyrotechnic mixture) is presented.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Propellants Explosives Pyrotechnics
ISSN
0721-3115
e-ISSN
—
Svazek periodika
45
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
7
Strana od-do
1813-1818
Kód UT WoS článku
000555322400001
EID výsledku v databázi Scopus
2-s2.0-85088951666