Waterborne coatings based on acrylic latex containing nanostructured ZnO as an active additive
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F20%3A39916546" target="_blank" >RIV/00216275:25310/20:39916546 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11998-019-00302-6" target="_blank" >https://link.springer.com/article/10.1007/s11998-019-00302-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11998-019-00302-6" target="_blank" >10.1007/s11998-019-00302-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Waterborne coatings based on acrylic latex containing nanostructured ZnO as an active additive
Popis výsledku v původním jazyce
This work was devoted to the study of the properties of an acrylate latex-based binder synthesized by semicontinuous emulsion polymerization. Nanoparticles of zinc oxide (NPsZnO) in an amount of 1.5 wt% with respect to the polymer content were added to the binder during the synthesis procedure. The binder was then homogenized with various anticorrosion pigments, fillers, and additives to obtain model anticorrosion paints. In addition, model paints with expected enhanced antimicrobial resistance designed for the protection of mineral substrates were also formulated and prepared. The effects of NPsZnO on the physicomechanical properties and on the chemical, anticorrosion, and antimicrobial resistance of the paint films were examined. The properties of the paints based on the synthesized binders were also compared to those of a commercial acrylate-type binder. The results show that incorporation of NPsZnO into the latex during the synthesis provided stable polymeric dispersions exhibiting physicochemical, mechanical, and anticorrosion properties that were superior to those of a blank binder (containing no nanoparticles) as well as to the commercial binder. It was also demonstrated that the binder with NPsZnO provided anticorrosion paints that are usable as coatings for environments with a moderate corrosion burden as well as paints for interior applications with reduced biocide contents.
Název v anglickém jazyce
Waterborne coatings based on acrylic latex containing nanostructured ZnO as an active additive
Popis výsledku anglicky
This work was devoted to the study of the properties of an acrylate latex-based binder synthesized by semicontinuous emulsion polymerization. Nanoparticles of zinc oxide (NPsZnO) in an amount of 1.5 wt% with respect to the polymer content were added to the binder during the synthesis procedure. The binder was then homogenized with various anticorrosion pigments, fillers, and additives to obtain model anticorrosion paints. In addition, model paints with expected enhanced antimicrobial resistance designed for the protection of mineral substrates were also formulated and prepared. The effects of NPsZnO on the physicomechanical properties and on the chemical, anticorrosion, and antimicrobial resistance of the paint films were examined. The properties of the paints based on the synthesized binders were also compared to those of a commercial acrylate-type binder. The results show that incorporation of NPsZnO into the latex during the synthesis provided stable polymeric dispersions exhibiting physicochemical, mechanical, and anticorrosion properties that were superior to those of a blank binder (containing no nanoparticles) as well as to the commercial binder. It was also demonstrated that the binder with NPsZnO provided anticorrosion paints that are usable as coatings for environments with a moderate corrosion burden as well as paints for interior applications with reduced biocide contents.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20506 - Coating and films
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Coatings Technology and research
ISSN
1547-0091
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
517-529
Kód UT WoS článku
000519473800017
EID výsledku v databázi Scopus
2-s2.0-85077548254