Neural networks applied in kinetic analysis of complex nucleation-growth processes: Outstanding solution for fully overlapping reaction mechanisms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F22%3A39919961" target="_blank" >RIV/00216275:25310/22:39919961 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022309322002411" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022309322002411</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jnoncrysol.2022.121640" target="_blank" >10.1016/j.jnoncrysol.2022.121640</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neural networks applied in kinetic analysis of complex nucleation-growth processes: Outstanding solution for fully overlapping reaction mechanisms
Popis výsledku v původním jazyce
Performance of several neural network architectures (convolutional neural network CNN, multilayer perceptron MLP, CNN/MLP hybrid CDD) was evaluated for kinetic analysis of complex processes with overlapping independent reaction mechanisms based on the nucleation-growth Johnson-Mehl-Avrami (JMA) model. Theoretically simulated data used for the testing covered absolute majority of real-life JMA-JMA solid-state kinetics scenarios. The performance of the tested architectures decreased in the following order: MLP > CDD >> CNN. For partially overlapping processes the CDD and MLP architectures provided accurate estimates of the JMA model kinetic parameters, performing on par with traditional methods of kinetic analysis. For the fully overlapping kinetic processes, the accuracy of the estimates provided by the neural networks significantly worsened, however still largely outperforming the traditional approaches of kinetic analysis based on the standard non-linear optimization, such as mathematic or kinetic deconvolution. The corresponding kinetic predictions were of suitable precision for majority of real-life applications preparation (glass-ceramics).
Název v anglickém jazyce
Neural networks applied in kinetic analysis of complex nucleation-growth processes: Outstanding solution for fully overlapping reaction mechanisms
Popis výsledku anglicky
Performance of several neural network architectures (convolutional neural network CNN, multilayer perceptron MLP, CNN/MLP hybrid CDD) was evaluated for kinetic analysis of complex processes with overlapping independent reaction mechanisms based on the nucleation-growth Johnson-Mehl-Avrami (JMA) model. Theoretically simulated data used for the testing covered absolute majority of real-life JMA-JMA solid-state kinetics scenarios. The performance of the tested architectures decreased in the following order: MLP > CDD >> CNN. For partially overlapping processes the CDD and MLP architectures provided accurate estimates of the JMA model kinetic parameters, performing on par with traditional methods of kinetic analysis. For the fully overlapping kinetic processes, the accuracy of the estimates provided by the neural networks significantly worsened, however still largely outperforming the traditional approaches of kinetic analysis based on the standard non-linear optimization, such as mathematic or kinetic deconvolution. The corresponding kinetic predictions were of suitable precision for majority of real-life applications preparation (glass-ceramics).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20504 - Ceramics
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018103" target="_blank" >LM2018103: Výzkumná infrastruktura CEMNAT</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Non-Crystalline Solids
ISSN
0022-3093
e-ISSN
1873-4812
Svazek periodika
588
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
"121640-1"-"121640-11"
Kód UT WoS článku
000913318200001
EID výsledku v databázi Scopus
2-s2.0-85127934638