Fraser-Suzuki function as an essential tool for mathematical modeling of crystallization in glasses
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F24%3A39920838" target="_blank" >RIV/00216275:25310/24:39920838 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0955221923006763?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0955221923006763?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jeurceramsoc.2023.08.050" target="_blank" >10.1016/j.jeurceramsoc.2023.08.050</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fraser-Suzuki function as an essential tool for mathematical modeling of crystallization in glasses
Popis výsledku v původním jazyce
The performance of the Fraser-Suzuki function during mathematic deconvolution of crystal growth kinetic processes was extensively analyzed based on theoretical simulations. Regarding pure imitation, the Fraser-Suzuki function well describes processes with moderate negative asymmetry of a3 approximate to<-0.6; -0.2>. Considering the ability of the Fraser-Suzuki function to transfer the kinetic information during the mathematic deconvolution (i. e., performance in the procedure: kinetic signal -> fit by Fraser-Suzuki function -> kinetic analysis of the FraserSuzuki data-curve), it is very well suited for separating processes following single-exponent kinetic models such as the nucleation-growth Johnson-Mehl-Avrami-Kolmogorov model or the nth order reaction model. For the nth order autocatalytic model, the magnitude of errors depends directly on the exponent nNC. Reliable performance of the Fraser-Suzuki function is achieved when resulting nNC falls in <0; 1.2> interval. Combining the FraserSuzuki mathematic deconvolution with the consequent kinetic analysis utilizing the nth order autocatalytic model is highly recommended.
Název v anglickém jazyce
Fraser-Suzuki function as an essential tool for mathematical modeling of crystallization in glasses
Popis výsledku anglicky
The performance of the Fraser-Suzuki function during mathematic deconvolution of crystal growth kinetic processes was extensively analyzed based on theoretical simulations. Regarding pure imitation, the Fraser-Suzuki function well describes processes with moderate negative asymmetry of a3 approximate to<-0.6; -0.2>. Considering the ability of the Fraser-Suzuki function to transfer the kinetic information during the mathematic deconvolution (i. e., performance in the procedure: kinetic signal -> fit by Fraser-Suzuki function -> kinetic analysis of the FraserSuzuki data-curve), it is very well suited for separating processes following single-exponent kinetic models such as the nucleation-growth Johnson-Mehl-Avrami-Kolmogorov model or the nth order reaction model. For the nth order autocatalytic model, the magnitude of errors depends directly on the exponent nNC. Reliable performance of the Fraser-Suzuki function is achieved when resulting nNC falls in <0; 1.2> interval. Combining the FraserSuzuki mathematic deconvolution with the consequent kinetic analysis utilizing the nth order autocatalytic model is highly recommended.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20504 - Ceramics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the European Ceramic Society
ISSN
0955-2219
e-ISSN
1873-619X
Svazek periodika
44
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
401-407
Kód UT WoS článku
001092179400001
EID výsledku v databázi Scopus
2-s2.0-85169921219