Progress in Energy-Safety Balanced Cocrystallization of Four Commercially Attractive Nitramines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F24%3A39921568" target="_blank" >RIV/00216275:25310/24:39921568 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.cgd.4c00686" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.cgd.4c00686</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.cgd.4c00686" target="_blank" >10.1021/acs.cgd.4c00686</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Progress in Energy-Safety Balanced Cocrystallization of Four Commercially Attractive Nitramines
Popis výsledku v původním jazyce
In 2011, cocrystallization of energetic materials became a hot topic and a pathway to overcome the energy-safety contradiction; especially for commercially attractive nitramines, it became the first preference for researchers. The present review focuses on the energetic-energetic cocrystallization of four commercially attractive nitramines, CL20, HMX, BCHMX, and RDX, the structural aspects of these cocrystals, and their influence on thermochemical and detonation properties. Cocrystallization has proven to be a crystal engineering technique to achieve the safety and morphological suitability of energetic-energetic cocrystals (EECCs). Overall, in most of the cases, the impact sensitivities of EECCs are decreased, and this is a phenomenal change; however, it needed to adjust with detonation properties slightly, and it is negligible if the coformer energetic materials (EMs) are properly chosen. There are other notable variations in the crystal morphologies and packing of crystals, including key properties such as relatively high density and melting point. These changes occur due to the binding energy, trigger bond energy, trigger bond length, and cohesive energy density of EECCs during cocrystallization. Researchers highly focused on cocrystallization of these four nitramines; earlier reported methods are lacking in selectivity and scalability. When it comes to adoption to industrial scale production of EECCs, it is more difficult. We conducted a thorough literature survey. Also we discussed about a recently developed VPSZ coagglomeration method, which provides a huge opportunity to tune the key properties and performance of existing energetic materials and is easy to scale up to the industrial level.
Název v anglickém jazyce
Progress in Energy-Safety Balanced Cocrystallization of Four Commercially Attractive Nitramines
Popis výsledku anglicky
In 2011, cocrystallization of energetic materials became a hot topic and a pathway to overcome the energy-safety contradiction; especially for commercially attractive nitramines, it became the first preference for researchers. The present review focuses on the energetic-energetic cocrystallization of four commercially attractive nitramines, CL20, HMX, BCHMX, and RDX, the structural aspects of these cocrystals, and their influence on thermochemical and detonation properties. Cocrystallization has proven to be a crystal engineering technique to achieve the safety and morphological suitability of energetic-energetic cocrystals (EECCs). Overall, in most of the cases, the impact sensitivities of EECCs are decreased, and this is a phenomenal change; however, it needed to adjust with detonation properties slightly, and it is negligible if the coformer energetic materials (EMs) are properly chosen. There are other notable variations in the crystal morphologies and packing of crystals, including key properties such as relatively high density and melting point. These changes occur due to the binding energy, trigger bond energy, trigger bond length, and cohesive energy density of EECCs during cocrystallization. Researchers highly focused on cocrystallization of these four nitramines; earlier reported methods are lacking in selectivity and scalability. When it comes to adoption to industrial scale production of EECCs, it is more difficult. We conducted a thorough literature survey. Also we discussed about a recently developed VPSZ coagglomeration method, which provides a huge opportunity to tune the key properties and performance of existing energetic materials and is easy to scale up to the industrial level.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Crystal Growth and Design
ISSN
1528-7483
e-ISSN
1528-7505
Svazek periodika
24
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
7361-7388
Kód UT WoS článku
001294188100001
EID výsledku v databázi Scopus
2-s2.0-85201700136