Synthesis, photophysics and two-photon absorption of imidazole-centred tripodal chromophores
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F24%3A39921720" target="_blank" >RIV/00216275:25310/24:39921720 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp02227k" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp02227k</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d4cp02227k" target="_blank" >10.1039/d4cp02227k</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Synthesis, photophysics and two-photon absorption of imidazole-centred tripodal chromophores
Popis výsledku v původním jazyce
Tripodal push-pull chromophores with D-(pi-A)3 arrangement were synthesized using 1-methyl-2,4,5-triphenyl-1H-imidazole as a central electron donor, and their thermal, electrochemical, photophysical and non-linear optical properties were studied and corroborated with quantum-chemical calculations. Their facile synthesis involved Suzuki-Miyaura and Knoevenagel reactions, allowing the installation of various peripheral electron acceptors such as formyl, cyano, ester, trifluoromethyl and more complex moieties such as malonic/acetic acid derivatives, indan-1,3-dione and rhodanine. All phenyl rings appended at the central imidazole core were more or less twisted depending on the peripheral substitution. Although imidazole undergoes reversible one-electron oxidation, peripheral acceptors are reduced irreversibly in a multi-electron process. This behaviour is further seen as a variation of the LUMO, while the HOMO remained almost unaltered across the whole series. TD-DFT calculations revealed centrifugal charge transfer from the central imidazole to all C2, C4 and C5 branches occupied by the LUMO, LUMO+1 and LUMO+2. The HOMO-LUMO gap is tuneable within the range of 3.55-2.31 eV, while the longest-wavelength absorption/emission maxima were found within the broad range of 304-448/393-612 nm. Although the absorption spectra are solvent-independent, the emission depends strongly on the solvent polarity and the electron-withdrawing power of the peripheral acceptors. Extended chromophores with complex electron acceptors were investigated as two-photon absorbers, revealing relatively good cross-section values of up to 521 GM and a figure-of-merit (Phi F x delta 2PA) of around 190 GM. Tripodal imidazole-centred chromophores bearing peripheral acceptors were prepared and investigated. The observed centrifugal ICT results in tuneable (nonlinear) optical properties and two-photon absorption cross-sections of up to 521 GM.
Název v anglickém jazyce
Synthesis, photophysics and two-photon absorption of imidazole-centred tripodal chromophores
Popis výsledku anglicky
Tripodal push-pull chromophores with D-(pi-A)3 arrangement were synthesized using 1-methyl-2,4,5-triphenyl-1H-imidazole as a central electron donor, and their thermal, electrochemical, photophysical and non-linear optical properties were studied and corroborated with quantum-chemical calculations. Their facile synthesis involved Suzuki-Miyaura and Knoevenagel reactions, allowing the installation of various peripheral electron acceptors such as formyl, cyano, ester, trifluoromethyl and more complex moieties such as malonic/acetic acid derivatives, indan-1,3-dione and rhodanine. All phenyl rings appended at the central imidazole core were more or less twisted depending on the peripheral substitution. Although imidazole undergoes reversible one-electron oxidation, peripheral acceptors are reduced irreversibly in a multi-electron process. This behaviour is further seen as a variation of the LUMO, while the HOMO remained almost unaltered across the whole series. TD-DFT calculations revealed centrifugal charge transfer from the central imidazole to all C2, C4 and C5 branches occupied by the LUMO, LUMO+1 and LUMO+2. The HOMO-LUMO gap is tuneable within the range of 3.55-2.31 eV, while the longest-wavelength absorption/emission maxima were found within the broad range of 304-448/393-612 nm. Although the absorption spectra are solvent-independent, the emission depends strongly on the solvent polarity and the electron-withdrawing power of the peripheral acceptors. Extended chromophores with complex electron acceptors were investigated as two-photon absorbers, revealing relatively good cross-section values of up to 521 GM and a figure-of-merit (Phi F x delta 2PA) of around 190 GM. Tripodal imidazole-centred chromophores bearing peripheral acceptors were prepared and investigated. The observed centrifugal ICT results in tuneable (nonlinear) optical properties and two-photon absorption cross-sections of up to 521 GM.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10401 - Organic chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
1463-9084
Svazek periodika
26
Číslo periodika v rámci svazku
31
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
20908-20918
Kód UT WoS článku
001274988000001
EID výsledku v databázi Scopus
2-s2.0-85199717213