Air Quality Assessment by Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F11%3A39892232" target="_blank" >RIV/00216275:25410/11:39892232 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4018/978-1-60960-156-0.ch005" target="_blank" >http://dx.doi.org/10.4018/978-1-60960-156-0.ch005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/978-1-60960-156-0.ch005" target="_blank" >10.4018/978-1-60960-156-0.ch005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Air Quality Assessment by Neural Networks
Popis výsledku v původním jazyce
The chapter presents an overview of current methods for air quality assessment, i.e. air stress indices and air quality indices. Traditional air quality assessment is realized using air quality indices which are determined as mean values of selected airpollutants. Thus, air quality assessment depends on strictly given limits without taking into account specific local conditions and synergic relations between air pollutants and other meteorological factors. The stated limitations can be eliminated, e.g.using systems based on neural networks and fuzzy logic. Therefore, the chapter presents a design of a model for air quality assessment based on a combination of Kohonen's self-organizing feature maps and fuzzy logic neural networks. The model makes it possible to analyze the structure of data, to find localities with similar air quality, and to interpret the classification results by means of fuzzy logic. Due to its generalization ability, it is also possible to classify unknown localit
Název v anglickém jazyce
Air Quality Assessment by Neural Networks
Popis výsledku anglicky
The chapter presents an overview of current methods for air quality assessment, i.e. air stress indices and air quality indices. Traditional air quality assessment is realized using air quality indices which are determined as mean values of selected airpollutants. Thus, air quality assessment depends on strictly given limits without taking into account specific local conditions and synergic relations between air pollutants and other meteorological factors. The stated limitations can be eliminated, e.g.using systems based on neural networks and fuzzy logic. Therefore, the chapter presents a design of a model for air quality assessment based on a combination of Kohonen's self-organizing feature maps and fuzzy logic neural networks. The model makes it possible to analyze the structure of data, to find localities with similar air quality, and to interpret the classification results by means of fuzzy logic. Due to its generalization ability, it is also possible to classify unknown localit
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/SP%2F4I2%2F60%2F07" target="_blank" >SP/4I2/60/07: Indikátory pro hodnocení a modelování internakcí mezi životním prostředím, ekonomikou a sociálními souvislostmi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Environmental Modeling for Sustainable Regional Development : System Approaches and Advanced Methods
ISBN
978-1-60960-156-0
Počet stran výsledku
27
Strana od-do
91-117
Počet stran knihy
492
Název nakladatele
IGI Global
Místo vydání
Hershey
Kód UT WoS kapitoly
—