Forecasting stock prices using sentiment information in annual reports - A neural network and support vector regression approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F13%3A39896546" target="_blank" >RIV/00216275:25410/13:39896546 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.wseas.org/multimedia/journals/economics/2013/235702-202.pdf" target="_blank" >http://www.wseas.org/multimedia/journals/economics/2013/235702-202.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Forecasting stock prices using sentiment information in annual reports - A neural network and support vector regression approach
Popis výsledku v původním jazyce
Stock price forecasting has been mostly realized using quantitative information. However, recent studies have demonstrated that sentiment information hidden in corporate annual reports can be successfully used to predict short-run stock price returns. Soft computing methods, like neural networks and support vector regression, have shown promising results in the forecasting of stock price due to their ability to model complex non-linear systems. In this paper, we apply several neural networks and ?-support vector regression models to predict the yearly change in the stock price of U.S. firms. We demonstrate that neural networks and ?-support vector regression perform better than linear regression models especially when using the sentiment information. The change in the sentiment of annual reports seems to be an important determinant of long-run stock price change. Concretely, the negative and uncertainty categories of terms were the key factors of the stock price return. Profitability a
Název v anglickém jazyce
Forecasting stock prices using sentiment information in annual reports - A neural network and support vector regression approach
Popis výsledku anglicky
Stock price forecasting has been mostly realized using quantitative information. However, recent studies have demonstrated that sentiment information hidden in corporate annual reports can be successfully used to predict short-run stock price returns. Soft computing methods, like neural networks and support vector regression, have shown promising results in the forecasting of stock price due to their ability to model complex non-linear systems. In this paper, we apply several neural networks and ?-support vector regression models to predict the yearly change in the stock price of U.S. firms. We demonstrate that neural networks and ?-support vector regression perform better than linear regression models especially when using the sentiment information. The change in the sentiment of annual reports seems to be an important determinant of long-run stock price change. Concretely, the negative and uncertainty categories of terms were the key factors of the stock price return. Profitability a
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AE - Řízení, správa a administrativa
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-10331S" target="_blank" >GA13-10331S: Úloha textové informace v modelech predikce finanční tísně podniků - přístupy specifické podle států a průmyslových odvětví</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
WSEAS Transactions on Business and Economics
ISSN
1109-9526
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GR - Řecká republika
Počet stran výsledku
13
Strana od-do
293-305
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—