The Fibonacci numbers for the molecular graphs of linear phenylenes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F16%3A39901019" target="_blank" >RIV/00216275:25410/16:39901019 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Fibonacci numbers for the molecular graphs of linear phenylenes
Popis výsledku v původním jazyce
The concept of the Fibonacci number of an undirected graph G=(V,E) refers to the number of independent vertex subsets U of V such that no two vertices from U are adjacent in G. In this paper the Fibonacci numbers of molecular graphs corresponding to one type of phenylenes are calculated using the decomposition formula. Investigation of the Fibonacci numbers of certain classes of graphs leads to a difference equation or systems of difference equations. The explicit formula for the Fibonacci numbers of linear phenylenes is found as a function of the number n of hexagons in the phenylene.
Název v anglickém jazyce
The Fibonacci numbers for the molecular graphs of linear phenylenes
Popis výsledku anglicky
The concept of the Fibonacci number of an undirected graph G=(V,E) refers to the number of independent vertex subsets U of V such that no two vertices from U are adjacent in G. In this paper the Fibonacci numbers of molecular graphs corresponding to one type of phenylenes are calculated using the decomposition formula. Investigation of the Fibonacci numbers of certain classes of graphs leads to a difference equation or systems of difference equations. The explicit formula for the Fibonacci numbers of linear phenylenes is found as a function of the number n of hexagons in the phenylene.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Pure and Applied Mathematics
ISSN
1311-8080
e-ISSN
—
Svazek periodika
106
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
BG - Bulharská republika
Počet stran výsledku
10
Strana od-do
307-316
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—