Measure of Uncertainty in Process Models Using Stochastic Petri Nets and Shannon Entropy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F16%3A39901050" target="_blank" >RIV/00216275:25410/16:39901050 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.mdpi.com/1099-4300/18/1/33" target="_blank" >http://www.mdpi.com/1099-4300/18/1/33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e18010033" target="_blank" >10.3390/e18010033</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Measure of Uncertainty in Process Models Using Stochastic Petri Nets and Shannon Entropy
Popis výsledku v původním jazyce
When modelling and analysing business processes, the main emphasis is usually put on model validity and accuracy, i.e., the model meets the formal specification and also models the relevant system. In recent years, a series of metrics has begun to develop, which allows the quantification of the specific properties of process models. These characteristics are, for instance, complexity, comprehensibility, cohesion, and uncertainty. This work is focused on defining a method that allows us to measure the uncertainty of a process model, which was modelled by using stochastic Petri nets (SPN). The principle of this method consists of mapping of all reachable marking of SPN into the continuous-time Markov chain and then calculating its stationary probabilities. The uncertainty is then measured as the entropy of the Markov chain (it is possible to calculate the uncertainty of the specific subset of places as well as of whole net). Alternatively, the uncertainty index is quantified as a percentage of the calculated entropy against maximum entropy (the resulting value is normalized to the interval < 0,1 >). The calculated entropy can also be used as a measure of the model complexity.
Název v anglickém jazyce
Measure of Uncertainty in Process Models Using Stochastic Petri Nets and Shannon Entropy
Popis výsledku anglicky
When modelling and analysing business processes, the main emphasis is usually put on model validity and accuracy, i.e., the model meets the formal specification and also models the relevant system. In recent years, a series of metrics has begun to develop, which allows the quantification of the specific properties of process models. These characteristics are, for instance, complexity, comprehensibility, cohesion, and uncertainty. This work is focused on defining a method that allows us to measure the uncertainty of a process model, which was modelled by using stochastic Petri nets (SPN). The principle of this method consists of mapping of all reachable marking of SPN into the continuous-time Markov chain and then calculating its stationary probabilities. The uncertainty is then measured as the entropy of the Markov chain (it is possible to calculate the uncertainty of the specific subset of places as well as of whole net). Alternatively, the uncertainty index is quantified as a percentage of the calculated entropy against maximum entropy (the resulting value is normalized to the interval < 0,1 >). The calculated entropy can also be used as a measure of the model complexity.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/VF20112015018" target="_blank" >VF20112015018: Bezpečnost občanů ? krizové řízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Entropy
ISSN
1099-4300
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
1-14
Kód UT WoS článku
000369487900015
EID výsledku v databázi Scopus
—